Spatially resolved gene signatures of white matter lesion progression in multiple sclerosis

Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

Article  CAS  PubMed  Google Scholar 

Hendrickx, D. A. E. et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01810 (2017).

Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 12, 358–368 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

Article  CAS  PubMed  Google Scholar 

Maggi, P. et al. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology 97, e543–e553 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mycko, M. P., Brosnan, C. F., Raine, C. S., Fendler, W. & Selmaj, K. W. Transcriptional profiling of microdissected areas of active multiple sclerosis lesions reveals activation of heat shock protein genes. J. Neurosci. Res. 90, 1941–1948 (2012).

Article  CAS  PubMed  Google Scholar 

Lindberg, R. L. P. et al. Multiple sclerosis as a generalized CNS disease—comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J. Neuroimmunol. 152, 154–167 (2004).

Article  CAS  PubMed  Google Scholar 

Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patsopoulos, N. A. et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

Article  CAS  Google Scholar 

Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

Article  PubMed  Google Scholar 

Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ponath, G. et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140, 399–413 (2017).

Article  PubMed  Google Scholar 

Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

Article  CAS  PubMed  Google Scholar 

Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Miedema, A. et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

Article  CAS  PubMed  Google Scholar 

Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

Article  CAS  PubMed  Google Scholar 

Acharyya, S., Zhou, X. & Baladandayuthapani, V. SpaceX: gene co-expression network estimation for spatial transcriptomics. Bioinformatics 38, 5033–5041 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

Article  CAS  PubMed  Google Scholar 

Colamatteo, A. et al. Reduced annexin A1 expression associates with disease severity and inflammation in multiple sclerosis patients. J. Immunol. 203, 1753–1765 (2019).

Article  CAS  PubMed  Google Scholar 

Paschalidis, N. et al. Modulation of experimental autoimmune encephalomyelitis by endogenous annexin A1. J. Neuroinflammation 6, 33 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Cristante, E. et al. Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc. Natl Acad. Sci. USA 110, 832–841 (2013).

Article  CAS  PubMed  Google Scholar 

Saeki, K. The B cell-specific major raft protein, raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J. 22, 3015–3026 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saeki, K. et al. A major lipid raft protein raftlin modulates T cell receptor signaling and enhances Th17-mediated autoimmune responses. J. Immunol. 182, 5929–5937 (2009).

Article  CAS  PubMed  Google Scholar 

Govindarajan, V., Vaccari, J. P. D. R. & Keane, R. W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflammation 17, 260 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jokubaitis, V. G. et al. Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis. Acta Neuropathol. Commun. 1, 32 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Soares, J. L., Oliveira, E. M. & Pontillo, A. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. Mult. Scler. Relat. Disord. 29, 26–34 (2019).

Article  PubMed  Google Scholar 

Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

Article 

留言 (0)

沒有登入
gif