Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).
Article CAS PubMed Google Scholar
Hendrickx, D. A. E. et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01810 (2017).
Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).
Article CAS PubMed PubMed Central Google Scholar
Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 12, 358–368 (2016).
Article CAS PubMed PubMed Central Google Scholar
Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019).
Article PubMed PubMed Central Google Scholar
Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).
Article CAS PubMed Google Scholar
Maggi, P. et al. Chronic white matter inflammation and serum neurofilament levels in multiple sclerosis. Neurology 97, e543–e553 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mycko, M. P., Brosnan, C. F., Raine, C. S., Fendler, W. & Selmaj, K. W. Transcriptional profiling of microdissected areas of active multiple sclerosis lesions reveals activation of heat shock protein genes. J. Neurosci. Res. 90, 1941–1948 (2012).
Article CAS PubMed Google Scholar
Lindberg, R. L. P. et al. Multiple sclerosis as a generalized CNS disease—comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J. Neuroimmunol. 152, 154–167 (2004).
Article CAS PubMed Google Scholar
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).
Article CAS PubMed PubMed Central Google Scholar
Patsopoulos, N. A. et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).
Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ponath, G. et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140, 399–413 (2017).
Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).
Article CAS PubMed Google Scholar
Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).
Article PubMed PubMed Central Google Scholar
Miedema, A. et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).
Article CAS PubMed Google Scholar
Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).
Article CAS PubMed Google Scholar
Acharyya, S., Zhou, X. & Baladandayuthapani, V. SpaceX: gene co-expression network estimation for spatial transcriptomics. Bioinformatics 38, 5033–5041 (2022).
Article CAS PubMed PubMed Central Google Scholar
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).
Article CAS PubMed Google Scholar
Colamatteo, A. et al. Reduced annexin A1 expression associates with disease severity and inflammation in multiple sclerosis patients. J. Immunol. 203, 1753–1765 (2019).
Article CAS PubMed Google Scholar
Paschalidis, N. et al. Modulation of experimental autoimmune encephalomyelitis by endogenous annexin A1. J. Neuroinflammation 6, 33 (2009).
Article PubMed PubMed Central Google Scholar
Cristante, E. et al. Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc. Natl Acad. Sci. USA 110, 832–841 (2013).
Article CAS PubMed Google Scholar
Saeki, K. The B cell-specific major raft protein, raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J. 22, 3015–3026 (2003).
Article CAS PubMed PubMed Central Google Scholar
Saeki, K. et al. A major lipid raft protein raftlin modulates T cell receptor signaling and enhances Th17-mediated autoimmune responses. J. Immunol. 182, 5929–5937 (2009).
Article CAS PubMed Google Scholar
Govindarajan, V., Vaccari, J. P. D. R. & Keane, R. W. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. J. Neuroinflammation 17, 260 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jokubaitis, V. G. et al. Endogenously regulated Dab2 worsens inflammatory injury in experimental autoimmune encephalomyelitis. Acta Neuropathol. Commun. 1, 32 (2013).
Article PubMed PubMed Central Google Scholar
Soares, J. L., Oliveira, E. M. & Pontillo, A. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. Mult. Scler. Relat. Disord. 29, 26–34 (2019).
Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).
留言 (0)