Antisense Oligonucleotides in Dyslipidemia Management: A Review of Clinical Trials

Du Z, Qin Y. Dyslipidemia and cardiovascular disease: current knowledge, existing challenges, and new opportunities for management strategies. J Clin Med. 2023;12(1):363. https://doi.org/10.3390/jcm12010363.

Article  PubMed  Google Scholar 

Hedayatnia M, Asadi Z, Zare-Feyzabadi R, Yaghooti-Khorasani M, Ghazizadeh H, Ghaffarian-Zirak R, Nosrati-Tirkani A, Mohammadi-Bajgiran M, Rohban M, Sadabadi F, Rahimi HR, Ghalandari M, Ghaffari MS, Yousefi A, Pouresmaeili E, Besharatlou MR, Moohebati M, Ferns GA, Esmaily H, Ghayour-Mobarhan M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis. 2020;19(1):42. https://doi.org/10.1186/s12944-020-01204-y.

Article  CAS  PubMed  Google Scholar 

Zodda D, Giammona R, Schifilliti S. Treatment strategy for dyslipidemia in cardiovascular disease prevention: focus on old and new drugs. Pharmacy (Basel). 2018;6(1):10. https://doi.org/10.3390/pharmacy6010010.

Article  PubMed  Google Scholar 

Sizar O, Khare S, Patel P, Talati R. Statin medications. Treasure Island: StatPearls Publishing; 2024.

Google Scholar 

Bardolia C, Amin NS, Turgeon J. Emerging non-statin treatment options for lowering low-density lipoprotein cholesterol. Front Cardiovasc Med. 2021;17(8): 789931. https://doi.org/10.3389/fcvm.2021.789931.

Article  CAS  Google Scholar 

Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–40. https://doi.org/10.4103/2231-4040.90879.

Article  CAS  PubMed  Google Scholar 

Gouni-Berthold I, Berthold H. Antisense oligonucleotides for the treatment of dyslipidemia. Curr Pharm Des. 2011;17(9):950–60. https://doi.org/10.2174/138161211795428830.

Article  CAS  PubMed  Google Scholar 

Crooke ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 2017;27:70–7. https://doi.org/10.1089/nat.2016.0656.

Article  CAS  PubMed  Google Scholar 

Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol. 2010;50:259–93. https://doi.org/10.1146/annurev.pharmtox.010909.105654.

Article  CAS  PubMed  Google Scholar 

Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–55.

CAS  PubMed  Google Scholar 

Agrawal S, Kandimalla ER. Antisense therapeutics: Is it as simple as complementary base recognition? Mol Med Today. 2000;6:72–81. https://doi.org/10.1016/s1357-4310(99)01638-x.

Article  CAS  PubMed  Google Scholar 

Chan JH, Lim S, Wong WF. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33:533–40. https://doi.org/10.1111/j.1440-1681.2006.04403.x.

Article  CAS  PubMed  Google Scholar 

Lauffer MC, van Roon-Mom W, Aartsma-Rus A, N = 1 Collaborative. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun Med (Lond). 2024;4(1):6. https://doi.org/10.1038/s43856-023-00419-1.

Article  CAS  PubMed  Google Scholar 

Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D, Garcia L, et al. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet. 2012;21:2559–71. https://doi.org/10.1093/hmg/dds082.

Article  CAS  PubMed  Google Scholar 

Prakash TP, Graham MJ, Yu J, Carty R, Low A, Chappell A, Schmidt K, Zhao C, Aghajan M, Murray HF. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014;42:8796–807. https://doi.org/10.1093/nar/gku531.

Article  CAS  PubMed  Google Scholar 

Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Bahal R. Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9:2004. https://doi.org/10.3390/jcm9062004.

Article  CAS  PubMed  Google Scholar 

Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci. 1978;75:280–4. https://doi.org/10.1073/pnas.75.1.280.

Article  CAS  PubMed  Google Scholar 

Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24:374–87. https://doi.org/10.1089/nat.2014.0506.

Article  CAS  PubMed  Google Scholar 

Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, et al. The progress and promise of RNA medicine—an arsenal of targeted treatments. J Med Chem. 2022;65:6975–7015. https://doi.org/10.1021/acs.jmedchem.2c00024.

Article  CAS  PubMed  Google Scholar 

Ersöz E, Demir-Dora D. Unveiling the potential of antisense oligonucleotides: mechanisms, therapies, and safety insights. Drug Dev Res. 2024. https://doi.org/10.1002/ddr.22187.

Article  PubMed  Google Scholar 

Nurmohamed NS, Navar AM, Kastelein JJP. New and emerging therapies for reduction of LDL-cholesterol and apolipoprotein B. J Am Coll Cardiol. 2021;77:1564–75. https://doi.org/10.1016/j.jacc.2020.11.079.

Article  CAS  PubMed  Google Scholar 

Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377:1723–32.

Article  CAS  PubMed  Google Scholar 

Raal FJ, Santos RD, Blom DJ, Marais AD, Charng M-J, Cromwell WC, Lachmann RH, Gaudet D, Tan JL. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006. https://doi.org/10.1016/s0140-6736(10)60284-x.

Article  CAS  PubMed  Google Scholar 

Gaudet D, Gipe DA, Pordy R, Ahmad Z, Cuchel M, Shah PK, Sasiela WJ, Chan K, Brisson D. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377:296–7. https://doi.org/10.1056/NEJMc1705994.

Article  PubMed  Google Scholar 

Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, Malik V, Shontz K, Walker CM, Flanigan KM, Corridore M, Kean JR, Allen HD, Shilling C, Melia KR, Sazani P, Saoud JB, Kaye EM. Eteplirsen for the treatment of duchenne muscular dystrophy. Ann Neurol. 2013;74:637–47. https://doi.org/10.1002/ana.23982.

Article  CAS  PubMed  Google Scholar 

Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Planté-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH III, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceição I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31. https://doi.org/10.1056/nejmoa1716793.

Article  CAS  PubMed  Google Scholar 

Tsimikas S, Viney NJ, Hughes SG, Singleton W, Graham MJ, Baker BF, Burkey JL, Yang Q, Marcovina SM, Geary RS, Crooke RM, Witztum JL. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet. 2015;386:1472–83. https://doi.org/10.1016/s0140-6736(15)61252-1.

Article  CAS  PubMed  Google Scholar 

Graham MJ, Lee RG, Bell TA III, Fu W, Mullick AE, Alexander VJ, Singleton W, Viney N, Geary R, Su J, Baker BF, Burkey J, Crooke ST, Crooke RM. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90. https://doi.org/10.1161/circresaha.111.300367.

Article  CAS  PubMed  Google Scholar 

Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, Yang Q, Hughes SG, Geary RS, Arca M, Stroes ESG, Bergeron J, Soran H, Civeira F, Hemphill L, Tsimikas S, Blom DJ, O’Dea L, Bruckert E. Volanesorsen and triglyceride levels

留言 (0)

沒有登入
gif