Maas, A. I. R., D. K. Menon, G. T. Manley, M. Abrams, C. Akerlund, N. Andelic, M. Aries, T. Bashford, M.J. Bell, Y. G. Bodien, et al. 2022. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurology 21 (11): 1004–1060. https://doi.org/10.1016/S1474-4422(22)00309-X.
Beattie, M. S., G. E. Hermann, R. C. Rogers, and J. C. Bresnahan. 2002. Cell death in models of spinal cord injury. Progress in Brain Research 137:37–47. https://doi.org/10.1016/s0079-6123(02)37006-7.
Xu, H., L. X. Zheng, X. S. Chen, Q. Y. Pang, Y. N. Yan, R. Liu, H. M. Guo, Z. Y. Ren, Y. Yang, Z. Y. Gu, et al. 2023. Brain-specific loss of Abcg1 disturbs cholesterol metabolism and aggravates pyroptosis and neurological deficits after traumatic brain injury. Brain Pathology 33 (3): e13126. https://doi.org/10.1111/bpa.13126.
Article CAS PubMed Google Scholar
Gyoneva, S., and R. M. Ransohoff. 2015. Inflammatory reaction after traumatic brain injury: Therapeutic potential of targeting cell-cell communication by chemokines. Trends in Pharmacological Sciences 36 (7): 471–480. https://doi.org/10.1016/j.tips.2015.04.003.
Article CAS PubMed Google Scholar
Kaur, P., and S. Sharma. 2018. Recent advances in pathophysiology of traumatic brain injury. Current Neuropharmacology 16 (8): 1224–1238. https://doi.org/10.2174/1570159X15666170613083606.
Article CAS PubMed Google Scholar
Ziebell, J. M., and M. C. Morganti-Kossmann. 2010. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7 (1): 22–30. https://doi.org/10.1016/j.nurt.2009.10.016.
Article CAS PubMed Google Scholar
McKenzie, B. A., V. M. Dixit, and C. Power. 2020. Fiery cell death: pyroptosis in the central nervous system. Trends in Neurosciences 43 (1): 55–73. https://doi.org/10.1016/j.tins.2019.11.005.
Article CAS PubMed Google Scholar
Cao, Y., M. Shi, L. Liu, Y. Zuo, H. Jia, X. Min, X. Liu, Z. Chen, Y. Zhou, S. Li, et al. 2023. Inhibition of neutrophil extracellular trap formation attenuates NLRP1-dependent neuronal pyroptosis via STING/IRE1alpha pathway after traumatic brain injury in mice. Frontiers in Immunology 14:1125759. https://doi.org/10.3389/fimmu.2023.1125759.
Article CAS PubMed Google Scholar
Cohen, J., A. Mathew, K. D. Dourvetakis, E. Sanchez-Guerrero, R. P. Pangeni, N. Gurusamy, K. K. Aenlle, G. Ravindran, A. Twahir, D. Isler, et al. 2024. Recent research trends in neuroinflammatory and neurodegenerative disorders. Cells 13 (6): 511. https://doi.org/10.3390/cells13060511.
Article CAS PubMed Google Scholar
Menu, P., and J. E. Vince. 2011. The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clinical and Experimental Immunology 166 (1): 1–15. https://doi.org/10.1111/j.1365-2249.2011.04440.x.
Article CAS PubMed PubMed Central Google Scholar
Swanson, K. V., M. Deng, and J. P. Ting. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology 19 (8): 477–489. https://doi.org/10.1038/s41577-019-0165-0.
Article CAS PubMed PubMed Central Google Scholar
Liu, X., Z. Zhang, J. Ruan, Y. Pan, V. G. Magupalli, H. Wu, and J. Lieberman. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535 (7610): 153–158. https://doi.org/10.1038/nature18629.
Article CAS PubMed PubMed Central Google Scholar
Ding, J., K. Wang, W. Liu, Y. She, Q. Sun, J. Shi, H. Sun, D. C. Wang, and F. Shao. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 (7610): 111–116. https://doi.org/10.1038/nature18590.
Article CAS PubMed Google Scholar
Gu, L., M. Sun, R. Li, Y. Tao, X. Luo, X. Zhang, Y. Yuan, and Z. Xie. 2022. Microglial pyroptosis: Therapeutic target in secondary brain injury following intracerebral hemorrhage. Frontiers in Cellular Neuroscience 16:971469. https://doi.org/10.3389/fncel.2022.971469.
Article CAS PubMed Google Scholar
Gu, L., M. Sun, R. Li, X. Zhang, Y. Tao, Y. Yuan, X. Luo, and Z. Xie. 2022. Didymin suppresses microglia pyroptosis and neuroinflammation through the Asc/Caspase-1/GSDMD pathway following experimental intracerebral hemorrhage. Frontiers in Immunology 13:810582. https://doi.org/10.3389/fimmu.2022.810582.
Article CAS PubMed Google Scholar
Xiong, W., C. Li, G. Kong, Q. Zeng, S. Wang, G. Yin, J. Gu, and J. Fan. 2022. Treg cell-derived exosomes miR-709 attenuates microglia pyroptosis and promotes motor function recovery after spinal cord injury. J Nanobiotechnology 20 (1): 529. https://doi.org/10.1186/s12951-022-01724-y.
Article CAS PubMed Google Scholar
Zhang, L., Y. Lin, W. Bai, L. Sun, and M. Tian. 2023. Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy. CNS Neuroscience & Therapeutics 29 (8): 2236–2258. https://doi.org/10.1111/cns.14159.
Zhang, Y., T. Rui, C. Luo, and Q. Li. 2021. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice. Experimental Brain Research 239 (5): 1581–1593. https://doi.org/10.1007/s00221-021-06089-6.
Article CAS PubMed Google Scholar
Wu, Q., C. Gao, H. Wang, X. Zhang, Q. Li, Z. Gu, X. Shi, Y. Cui, T. Wang, X. Chen, et al. 2018. Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. International Journal of Biochemistry & Cell Biology 94:44–55. https://doi.org/10.1016/j.biocel.2017.11.007.
Chao, H., C. Lin, Q. Zuo, Y. Liu, M. Xiao, X. Xu, Z. Li, Z. Bao, H. Chen, Y. You, et al. 2019. Cardiolipin-dependent mitophagy guides outcome after traumatic brain injury. Journal of Neuroscience 39 (10): 1930–1943. https://doi.org/10.1523/JNEUROSCI.3415-17.2018.
Article CAS PubMed Google Scholar
Ma, S., J. Chen, J. Feng, R. Zhang, M. Fan, D. Han, X. Li, C. Li, J. Ren, Y. Wang, et al. 2018. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Medicine and Cellular Longevity 2018:9286458. https://doi.org/10.1155/2018/9286458.
Article CAS PubMed PubMed Central Google Scholar
Harris, J., N. Deen, S. Zamani, and M. A. Hasnat. 2018. Mitophagy and the release of inflammatory cytokines. Mitochondrion 41:2–8. https://doi.org/10.1016/j.mito.2017.10.009.
Article CAS PubMed Google Scholar
Lin, C., H. Chao, Z. Li, X. Xu, Y. Liu, L. Hou, N. Liu, and J. Ji. 2016. Melatonin attenuates traumatic brain injury-induced inflammation: A possible role for mitophagy. Journal of Pineal Research 61 (2): 177–186. https://doi.org/10.1111/jpi.12337.
Article CAS PubMed Google Scholar
Zhang, L., Z. Hu, Z. Li, and Y. Lin. 2024. Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regeneration Research 19 (8): 1660–1670. https://doi.org/10.4103/1673-5374.389361.
Article CAS PubMed Google Scholar
Cutshall, N. S., R. Ursino, K. A. Kucera, J. Latham, and N. C. Ihle. 2001. Nicotinamide N-oxides as CXCR2 antagonists. Bioorganic & Medicinal Chemistry Letters 11 (14): 1951–1954. https://doi.org/10.1016/s0960-894x(01)00326-2.
Song, X., W. Cao, Z. Wang, F. Li, J. Xiao, Q. Zeng, Y. Wang, S. Li, C. Ye, Y. Wang, et al. 2022. Nicotinamide n-Oxide attenuates HSV-1-induced microglial inflammation through Sirtuin-1/NF-kappaB signaling. International Journal of Molecular Sciences 23 (24): 16085. https://doi.org/10.3390/ijms232416085.
Article CAS PubMed PubMed Central Google Scholar
Yang, F., G. Li, B. Lin, and K. Zhang. 2022. Gastrodin suppresses pyroptosis and exerts neuroprotective effect in traumatic brain injury model by inhibiting NLRP3 inflammasome signaling pathway. Journal of Integrative Neuroscience 21 (2): 72. https://doi.org/10.31083/j.jin2102072.
留言 (0)