Cell Toxicity of Kadsuric Acid from Kadsura coccinea in Human Pancreatic Cancer Cells Through Caspase/PARP Pathway: In Vitro and In Silico Approach

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001

Article  Google Scholar 

Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acid Res 47:3811. https://doi.org/10.1093/NAR/GKZ120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Q, Tan S, Xu T, Liu H, Huang J, Yao X (2021) MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief Bioinform 22. https://doi.org/10.1093/BIB/BBAA161

Ban N, Thanh B, Kiem P, Minh C, Cuong N, Nhiem N, Huong H, Anh H, Park EJ, Sohn D, Kim Y (2009) Dibenzocyclooctadiene lignans and lanostane derivatives from the roots of Kadsura coccinea and their protective effects on primary rat hepatocyte injury induced by t -butyl hydroperoxide. Planta Med 75:1253–1257. https://doi.org/10.1055/S-0029-1185537

Article  CAS  PubMed  Google Scholar 

Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

Article  CAS  Google Scholar 

Bich VN, Nguyen TK, Thu TD, Tran LT, Nguyen SV, Han HL, Pham LHD, Thanh TH, Duong VH, Trieu TA, Tran MH, Pham PT (2023) Investigating the antibacterial mechanism of Ampelopsis cantoniensis extracts against methicillin-resistant Staphylococcus aureus via in vitro and in silico analysis. J Biomol Struct Dyn 41:14080–14091. https://doi.org/10.1080/07391102.2023.2187218

Article  CAS  PubMed  Google Scholar 

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14. https://doi.org/10.1186/1471-2121-14-32

Chaudhry GES, Md Akim A, Sung YY, Sifzizul TM (2022) Cancer and apoptosis: the apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 13:842376. https://doi.org/10.3389/fphar.2022.842376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadheech N, Srivastava A, Shah RG, Shah GM, Gupta S (2022) Role of poly(ADP-ribose) polymerase-1 in regulating human islet cell differentiation. Sci Rep-UK 12:21496. https://doi.org/10.1038/s41598-022-25405-w

Article  CAS  Google Scholar 

Daniyal M, Liu Y, Yang Y, Xiao F, Fan J, Yu H, Qiu Y, Liu B, Wang W, Yuhui Q (2021) Anti-gastric cancer activity and mechanism of natural compound “Heilaohulignan C” isolated from Kadsura coccinea. Phytother Res 35:3977–3987. https://doi.org/10.1002/ptr.7114

Article  CAS  PubMed  Google Scholar 

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61:3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2016) Gaussian 16 Revision A.03. Accessed 17 Feb 2017

GaussView (2016) Version 6.0.16, Dennington R; Todd KA, Millam JMS Inc., Shawnee Mission, KS

Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7:165–172. https://doi.org/10.1016/j.carrev.2006.02.002

Article  PubMed  Google Scholar 

Hu ZX, Shi YM, Wang WG, Li XN, Du X, Liu M, Li Y, Xue YB, Zhang YH, Pu JX, Sun HD (2015) Kadcoccinones A-F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea. Org Lett 17:4616–4619. https://doi.org/10.1021/ACS.ORGLETT.5B02360

Article  CAS  PubMed  Google Scholar 

Hu ZX, Hu K, Shi YM, Wang WG, Du X, Li Y, Zhang YH, Pu JX, Sun HD (2016) Rearranged 6/6/5/6-fused triterpenoid acids from the stems of Kadsura coccinea. J Nat Prod 79:2590–2598. https://doi.org/10.1021/acs.jnatprod.6b00508

Article  CAS  PubMed  Google Scholar 

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/JCC.20945

Article  CAS  PubMed  Google Scholar 

Le BTN, Le ML, Nguyen HD, Tran PT, Tran PL, Jeong HL, Phuong TT, Tran LPT, Tran MH (2018) Sàng lọc hoạt tính độc tế bào của dịch chiết cồn từ các dược liệu thu hái tại Quảng Nam, Đà Nẵng trên dòng tế bào ung thư tuyến tụy. Tạp Chí Dược Liệu 23:11–17

Google Scholar 

Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J (2020) PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 19:107. https://doi.org/10.1186/S12943-020-01227-0

Article  CAS  PubMed  Google Scholar 

Liang CQ, Shi YM, Li XY, Luo RH, Li Y, Zheng YT, Zhang HB, Xiao WL, Sun HD (2013) Kadcotriones A-C: tricyclic triterpenoids from Kadsura coccinea. J Nat Prod 76:2350–2354. https://doi.org/10.1021/NP400546Z

Article  CAS  PubMed  Google Scholar 

Liu J, Qi Y, Lai H, Zhang J, Jia X, Liu H, Zhang B, Xiao P (2014) Genus Kadsura, a good source with considerable characteristic chemical constituents and potential bioactivities. Phytomedicine 21:1092–1097. https://doi.org/10.1016/j.phymed.2014.01.015

Article  CAS  PubMed  Google Scholar 

Long H, Xia X, Liao S, Wu T, Wang L, Chen Q, Wei S, Gu X, Zhu Z (2022) Physicochemical characterization and antioxidant and hypolipidaemic activities of a polysaccharide from the fruit of Kadsura coccinea (Lem.) A.C.Smith. Front Nutr 9:903218. https://doi.org/10.3389/FNUT.2022.903218

Article  PubMed  PubMed Central  Google Scholar 

Lu J, Zheng Y, Yang Z, Cheng J, Luo F (2022) Phenolics profile and protective effect on injuried HUVEC cells of epicarp extracts from Kadsura coccinea. Foods 11:556. https://doi.org/10.3390/FOODS11040556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medoro A, Jafar TH, Ali S, Trung TT, Sorrenti V, Intrieri M, Scapagnini G, Davinelli S (2023) In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomed Pharmacother 161:114425. https://doi.org/10.1016/j.biopha.2023.114425

Article  CAS  PubMed  Google Scholar 

Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/JCC.21256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen TK, Nguyen TNL, Nguyen K, Nguyen HVT, Tran LTT, Ngo TXT, Pham PTV, Tran MH (2022a) Machine learning-based screening of MCF-7 human breast cancer cells and molecular docking analysis of essential oils from Ocimum basilicum against breast cancer. J Mol Struct 1268:133627. https://doi.org/10.1016/j.molstruc.2022.133627

Article  CAS  Google Scholar 

Nguyen TK, Tran TH, Nguyen K, Ho DV, Nguyen HT, Tran LTT (2022b) Deep learning model to identify potential acetylcholinesterase inhibitors: a case study of isolated compounds from Pongamia pinnata (L.) Pierre. Nat Prod Comm 17. https://doi.org/10.1177/1934578X221117310

Pham HH (2006) Cây Có Vị Thuốc Ở Việt Nam - Tái bản 12/06/2006, NXB Trẻ (Medicinal plants in Vietnam, 2006th edn. Youth Publishing House, Vietnam

Google Scholar 

Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/BIOINFORMATICS/BTT055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roy A, Nair S, Sen N, Soni N, Madhusudhan MS (2017) In silico methods for design of biological therapeutics. Methods 131:33–65. https://doi.org/10.1016/J.YMETH.2017.09.008

Article  CAS  PubMed  Google Scholar 

Tao M, Wu X (2021) The role of patient-derived ovarian cancer organoids in the study of PARP inhibitors sensitivity and resistance: from genomic analysis to functional testing. J Exp Clin Canc Res 40:338. https://doi.org/10.1186/S13046-021-02139-7

Article  Google Scholar 

Tram LH, Thu Huong T, Thi Thuy L, Van Thong N, Tuan Anh N, Hoang Minh N, Thu Ha T, Anh Dung D, Thao NP, Thuong PT, Le DD, Hiep ND, Shin HJ (2022) A new triterpenoid from the stems of Kadsura coccinea with antiproliferative activity. Nat Prod Res 36:2542–2546. https://doi.org/10.1080/14786419.2021.1914612

Article  CAS  PubMed  Google Scholar 

Tran LTT, Pham LHD, Dang NYT, Nguyen Le NT, Nguyen HB, Nguyen TK (2022) Phytochemicals de

留言 (0)

沒有登入
gif