Evaluation of the Antibacterial Potency of Phytochemicals and Their Effects on Host Xenobiotic Response Using Caenorhabditis elegans

Adamczak A, Karpiński TM, Ożarowski M (2020) Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 13:153. https://doi.org/10.3390/ph13070153

Article  CAS  PubMed  Google Scholar 

Bhattacharya S, Bhattacharjee C, Chakraborty P, Sen D (2022) Kinetics of bactericidal potency with synergistic combination of allicin and selected antibiotics. J Biosci Bioeng 133:567–578. https://doi.org/10.1016/j.jbiosc.2022.02.007

Article  CAS  PubMed  Google Scholar 

Blackwell TK, Ewald CY, Hourihan JM, Isik M, Steinbaugh MJ (2015) SKN-1/NRF, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301. https://doi.org/10.1016/j.freeradbiomed.2015.06.008

Article  CAS  PubMed  Google Scholar 

Chakraborty D, Ghosh S, Khuda-Bukhsh AR, Mukherjee A, Paul A, Sikdar S (2012) 6-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett 210:34–43. https://doi.org/10.1016/j.toxlet.2012.01.002

Article  CAS  PubMed  Google Scholar 

Chow YL, Sato F (2018) Transgenerational lipid-reducing activity of benzylisoquinoline alkaloids in Caenorhabditis elegans. Genes Cells 24:70–81. https://doi.org/10.1111/gtc.12657

Article  CAS  PubMed  Google Scholar 

CLSI (2018) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI supplement M07. Clinical and Laboratory Standards Institute, Wayne

CLSI (2020) Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne

Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. In: De Stasio EA (ed) WormBook. The C. elegans Research Community. https://doi.org/10.1895/wormbook.1.177.1

Cutler RR, Wilson P (2004) Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci 61:71–74. https://doi.org/10.1080/09674845.2004.11732646

Article  CAS  PubMed  Google Scholar 

Detienne G, De HW, Schoofs L, Temmerman L, Van WP (2016) SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling. Worm 5:e1230585. https://doi.org/10.1080/21624054.2016.1230585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukao T, Ariga T, Hosono T, Misawa S, Seki T (2004) The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride. Food Chem Toxicol 42:743–749. https://doi.org/10.1016/j.fct.2003.12.010

Article  CAS  PubMed  Google Scholar 

Gao C, Jiang X, Wang H, Wang W, Zhao Z (2013) Drug metabolism and pharmacokinetics of organosulfur compounds from garlic. J Drug Metab Toxicol 4:1000159. https://doi.org/10.4172/2157-7609.1000159

Article  CAS  Google Scholar 

Ha NM, Kang K, Shim YH, Tran SH (2022) Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Appl Biol Chem 65:18. https://doi.org/10.1186/s13765-022-00685-y

Article  Google Scholar 

Hewlings S, Kalman D (2017) Curcumin: a review of its effects on human health. Foods 6:92. https://doi.org/10.3390/foods6100092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horev-Azaria L, Amariglio N, Eliav S, Izigov N, Jacob-Hirsch J, Mirelman D, Miron T, Pri-Chen S, Rabinkov A, Savion N, Wilchek M (2009) Allicin up-regulates cellular glutathione level in vascular endothelial cells. Eur J Nutr 48:67–74. https://doi.org/10.1007/s00394-008-0762-3

Article  CAS  PubMed  Google Scholar 

Karengera A, Dinkla IJT, Kammenga JE, Murk AJ, Riksen JAG, Sterken MG (2022) Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin. Ecotoxicol Environ Saf 233:113344. https://doi.org/10.1016/j.ecoenv.2022.113344

Article  CAS  PubMed  Google Scholar 

Karsha PV, Lakshmi OB (2010) Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. Indian J Nat Prod Resour 1:213–215

Google Scholar 

Khameneh B, Fazly BBS, Iranshahy M, Soheili V (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:118. https://doi.org/10.1186/s13756-019-0559-6

Article  PubMed  PubMed Central  Google Scholar 

Li PY, Li M, Tang J, Wang DZ, Wen M (2020) Identification of the metabolites of piperine via hepatocyte incubation and liquid chromatography combined with diode-array detection and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 34:e8947. https://doi.org/10.1002/rcm.8947

Article  CAS  PubMed  Google Scholar 

Moreira ES, Ames SAP, Bracht A, Bracht L, Bonetti CI, Comar JF, Leal LE, Nakanishi AB, Peralta RM (2022) The short-term effects of berberine in the liver: narrow margins between benefits and toxicity. Toxicol Lett 368:56–65. https://doi.org/10.1016/j.toxlet.2022.08.005

Article  CAS  PubMed  Google Scholar 

Oyedemi BOM, Gibbons S, Kotsia EM, Stapleton PD (2019) Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer. J Ethnopharmacol 245:111871. https://doi.org/10.1016/j.jep.2019.111871

Article  CAS  PubMed  Google Scholar 

Prasad S, Aggarwal BB, Tyagi AK (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from Golden Spice. Cancer Res Treat 46:2–18. https://doi.org/10.4143/crt.2014.46.1.2

Article  CAS  PubMed  Google Scholar 

Pukkila-Worley R, Conery AL, Feinbaum RL, McEwan DL (2014) The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog 10:e1004143. https://doi.org/10.1371/journal.ppat.1004143

Article  CAS  PubMed  Google Scholar 

Thongin S, Boonthip C, Den T, Ketsawatsomkron P, Laolob T, Muta K, Sibmooh N, Sriwantana T, Wichai U, Uppakara K (2022) Beneficial effects of capsaicin and dihydrocapsaicin on endothelial inflammation, nitric oxide production and antioxidant activity. Biomed Pharmacother 154:113521. https://doi.org/10.1016/j.biopha.2022.113521

Article  CAS  PubMed  Google Scholar 

Uzun L, Cibali AZ, Dal T, Durmaz R, Kalcioglu M, Yurek M (2019) Antimicrobial activity of garlic derivatives on common causative microorganisms of the external ear canal and chronic middle ear infections. Turk Arch Otorhinolaryngol 57:161–165. https://doi.org/10.5152/tao.2019.4413

Article  PubMed  Google Scholar 

Wang K, Chai L, Cao S, Feng X, Qiu F (2017) The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 49:139–157. https://doi.org/10.1080/03602532.2017.1306544

Article  CAS  PubMed  Google Scholar 

Westervelt P, Bright DR, Cho K, Kisor DF (2014) Drug–gene interactions: inherent variability in drug maintenance dose requirements. Pharmacy and Therapeutics 39:630–637

PubMed  Google Scholar 

WHO (2024) Antimicrobial resistance. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 24 January 2024

Wu S, Ding W, Gong Y, Hong Y, Ni J, Yang K, Yang N (2022) A new perspective on the antimicrobial mechanism of berberine hydrochloride against Staphylococcus aureus revealed by untargeted metabolomic studies. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.917414

Zarai Z, Ben SN, Boujelbene E, Gargouri Y, Sayari A (2013) Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT-Food Sci Technol 50:634–641. https://doi.org/10.1016/j.lwt.2012.07.036

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif