Health-related quality of life dynamics: modeling insights from immunotherapy

Beaulieu E, Spanjaart A, Roes A, Rachet B, Dalle S, Kersten MJ, Maucort-Boulch D, Jalali MS. Health-related quality of life in cancer immunotherapy: a systematic perspective, using causal loop diagrams. Quality of Life Research, 31, 2357–66. https://doi.org/10.1007/s11136-022-03110-5

Guyatt, G. H., Feeny, D. H., & Patrick, D. L. (1993). Measuring health-related quality of life. Annals of Internal Medicine, 118, 622–629. https://doi.org/10.7326/0003-4819-118-8-199304150-00009

Article  CAS  PubMed  Google Scholar 

Jalali, M. S., Digennaro, C., Guitar, A., et al. (2021). Evolution and reproducibility of Simulation modeling in Epidemiology and Health Policy over half a century. Epidemiologic Reviews, 43, 166–175. https://doi.org/10.1093/EPIREV/MXAB006

Article  PubMed Central  Google Scholar 

Marshall, D. A., Burgos-Liz, L., Ijzerman, M. J., et al. (2015). Applying dynamic simulation modeling methods in health care delivery research-the SIMULATE checklist: Report of the ISPOR simulation modeling emerging good practices task force. Value In Health : The Journal of the International Society for Pharmacoeconomics and Outcomes Research, 18, 5–16. https://doi.org/10.1016/J.JVAL.2014.12.001

Article  PubMed  Google Scholar 

Mullard, A. (2017). FDA approves first CAR T therapy. Nature Reviews. Drug Discovery, 16, 669. https://doi.org/10.1038/NRD.2017.196

Article  PubMed  Google Scholar 

Mullard, A. (2021). FDA approves fourth CAR-T cell therapy. Nature Reviews. Drug Discovery, 20, 166. https://doi.org/10.1038/D41573-021-00031-9

Article  PubMed  Google Scholar 

Voelker, R. (2020). CAR-T therapy is approved for Mantle Cell Lymphoma. Journal of the American Medical Association, 324, 832–832. https://doi.org/10.1001/JAMA.2020.15456

Article  PubMed  Google Scholar 

FDA Approves Second CAR T-cell Therapy (2018). Cancer Discovery. ;8:5–6. doi: https://doi.org/10.1158/2159-8290.CD-NB2017-155/335933/P/FDA-APPROVES-SECOND-CAR-T-CELL-THERAPYFDA-APPROVES.

Article  Google Scholar 

Mullard, A. (2021). FDA approves first BCMA-targeted CAR-T cell therapy. Nature Reviews. Drug Discovery, 20, 332. https://doi.org/10.1038/D41573-021-00063-1

Article  PubMed  Google Scholar 

Schuster, S. J., Bishop, M. R., Tam, C. S., et al. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell lymphoma. New England Journal of Medicine, 380, 45–56. https://doi.org/10.1056/NEJMOA1804980

Article  CAS  PubMed  Google Scholar 

Porter, D. L., Hwang, W. T., Frey, N. V., et al. (2015). Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 7. https://doi.org/10.1126/SCITRANSLMED.AAC5415

Shah, N. N., Lee, D. W., Yates, B., et al. (2021). Long-term Follow-Up of CD19-CAR T-Cell therapy in children and young adults with B-ALL. Journal of Clinical Oncology, 39, 1650–1659. https://doi.org/10.1200/JCO.20.02262

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsallab, M., Ellithi, M., Hempel, S., et al. (2023). Long-term response to autologous anti-CD19 chimeric antigen receptor T cells in relapsed or refractory B cell acute lymphoblastic leukemia: A systematic review and meta-analysis. Cancer Gene Therapy 2023, 1–10. https://doi.org/10.1038/s41417-023-00593-3

Locke, F. L., Ghobadi, A., Jacobson, C. A., et al. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. The Lancet Oncology, 20, 31–42. https://doi.org/10.1016/S1470-2045(18)30864-7

Article  CAS  PubMed  Google Scholar 

Brudno, J. N., & Kochenderfer, J. N. (2016). Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood, 127, 3321–3330. https://doi.org/10.1182/BLOOD-2016-04-703751

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruark, J., Mullane, E., Cleary, N., et al. (2020). Patient-reported neuropsychiatric outcomes of long-term survivors after Chimeric Antigen Receptor T Cell Therapy. Biology of Blood and Marrow Transplantation, 26, 34–43. https://doi.org/10.1016/J.BBMT.2019.09.037

Article  PubMed  Google Scholar 

Taylor, M. R., Steineck, A., Lahijani, S., et al. (2023). Biobehavioral Implications of Chimeric Antigen Receptor T-cell therapy: Current state and future directions. Transplant Cell Ther, 29, 19–26. https://doi.org/10.1016/J.JTCT.2022.09.029

Article  CAS  PubMed  Google Scholar 

Gagelmann, N., Sureda, A., Montoto, S., et al. (2022). Access to and affordability of CAR T-cell therapy in multiple myeloma: An EBMT position paper. Lancet Haematol, 9, e786–e795. https://doi.org/10.1016/S2352-3026(22)00226-5

Article  CAS  PubMed  Google Scholar 

Efficace, F., Cannella, L., Sparano, F., et al. (2022). Chimeric Antigen receptor T-cell therapy in hematologic malignancies and patient-reported outcomes: A scoping review. Hemasphere, 6, e802. https://doi.org/10.1097/HS9.0000000000000802

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhury, A., Zhu, X., Chu, L., et al. (2020). Chimeric Antigen Receptor T Cell Therapies: A review of Cellular Kinetic-Pharmacodynamic modeling approaches. The Journal of Clinical Pharmacology, 60, S147–S159. https://doi.org/10.1002/JCPH.1691

Article  CAS  PubMed  Google Scholar 

Vinke, P. C., Combalia, M., De Bock, G. H., et al. (2023). Monitoring multidimensional aspects of quality of life after cancer immunotherapy: Protocol for the international multicentre, observational QUALITOP cohort study. British Medical Journal Open, 13. https://doi.org/10.1136/BMJOPEN-2022-069090

Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin McGraw-Hill, Boston.

Liu, L., Ma, C., Zhang, Z., et al. (2022). Computational model of CAR T-cell immunotherapy dissects and predicts leukemia patient responses at remission, resistance, and relapse. Journal for Immunotherapy of Cancer, 10, 5360. https://doi.org/10.1136/jitc-2022-005360

Article  Google Scholar 

Hardiansyah, D., & Ng, C. M. (2019). Quantitative Systems Pharmacology Model of Chimeric Antigen Receptor T-Cell therapy. Clinical and Translational Science, 12, 343–349. https://doi.org/10.1111/CTS.12636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, C., Ayyar, V. S., Zheng, X., et al. (2021). Model-Based Cellular Kinetic Analysis of Chimeric Antigen Receptor-T cells in humans. Clinical Pharmacology and Therapeutics, 109, 716–727. https://doi.org/10.1002/CPT.2040

Article  CAS  PubMed  Google Scholar 

Deboeck, P. R., & Bergeman, C. S. (2013). The Reservoir Model: A Differential equation model of psychological regulation. Psychological Methods, 18, 237. https://doi.org/10.1037/A0031603

Article  PubMed  PubMed Central  Google Scholar 

Carrero, G., Makin, J., Malinowski, P. (2002). A mathematical model for the dynamics of happiness. Mathematical Biosciences and Engineering 2022 2: 2022;19:2002–29. https://doi.org/10.3934/MBE.2022094

Wrosch, C., Scheier, M. F., & Miller, G. E. (2013). Goal Adjustment Capacities, Subjective Well-Being, and Physical Health. Soc Personal Psychol Compass, 7, 847. https://doi.org/10.1111/SPC3.12074

Article  PubMed  PubMed Central  Google Scholar 

Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review: The Journal of the System Dynamics Society, 12, 183-210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3%3C183::AID-SDR103%3E3.0.CO;2-4

Spanjaart, A. M., Pennings, E. R. A., Mutsaers, P. G. N. J., et al. (2023). The Dutch CAR-T tumorboard experience: Population-based real-World Data on patients with relapsed or refractory large B-Cell Lymphoma Referred for CD19-Directed CAR T-Cell therapy in the Netherlands. Cancers (Basel), 15. https://doi.org/10.3390/CANCERS15174334

Vercellino, L., Di Blasi, R., Kanoun, S., et al. (2020). Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv, 4, 5607–5615. https://doi.org/10.1182/BLOODADVANCES.2020003001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bethge, W. A., Martus, P., Schmitt, M., et al. (2022). GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany. Blood, 140, 349–358. https://doi.org/10.1182/BLOOD.2021015209

Article  CAS  PubMed  Google Scholar 

Bastos-Oreiro, M., Gutierrez, A., Reguera, J. L., et al. (2021). Rreal-world results from Anti-CD19 CAR-T cell therapy for relapsed or refractory diffuse large B-Cell lymphoma in Spain and comparison with previous Standard of Care: A Geltamo/Geth study. Blood, 138, 3850. https://doi.org/10.1182/BLOOD-2021-147670

Article  Google Scholar 

Almåsbak, H., Aarvak, T., & Vemuri, M. C. (2016). CAR T cell therapy: A game changer in Cancer Treatment. J Immunol Res, 2016. https://doi.org/10.1155/2016/5474602

Wall, D. A., & Krueger, J. (2020). Chimeric antigen receptor T cell therapy comes to clinical practice. Current Oncology (Toronto, Ont.), 27, 115–123. https://doi.org/10.3747/CO.27.5283

Article  Google Scholar 

Chen, A. J., Zhang, J., Agarwal, A., et al. (2022). Value of Reducing Wait Times for Chimeric Antigen Receptor T-Cell treatment: Evidence from Randomized Controlled Trial Data on Tisagenlecleucel for diffuse large B-Cell lymphoma. Value in Health, 25, 1344–1351. https://doi.org/10.1016/J.JVAL.2022.02.007

Article 

留言 (0)

沒有登入
gif