Coller, B. S. Blood at 70: its roots in the history of hematology and its birth. Blood 126, 2548–2560 (2015).
Article CAS PubMed PubMed Central Google Scholar
Godin, I. & Cumano, A. Of birds and mice: hematopoietic stem cell development. Int. J. Dev. Biol. 49, 251–257 (2005). This paper provides a comprehensive review of studies detailing haematopoietic development in model species.
Article CAS PubMed Google Scholar
Hayakawa, K., Hardy, R. R., Herzenberg, L. A. & Herzenberg, L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161, 1554–1568 (1985). This study is one of the first to identify that the liver, spleen or bone marrow from young mice could repopulate B-1 cells in lethally irradiated recipients, but bone marrow from adult mice could not.
Article CAS PubMed Google Scholar
Herzenberg, L. A. & Herzenberg, L. A. Toward a layered immune system. Cell 59, 953–954 (1989).
Article CAS PubMed Google Scholar
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).
Article CAS PubMed PubMed Central Google Scholar
Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).
Article CAS PubMed Google Scholar
Vermijlen, D. & Prinz, I. Ontogeny of innate T Lymphocytes — some innate lymphocytes are more innate than others. Front. Immunol. 5, 110132 (2014).
Gentek, R. et al. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48, 1160–1171.e5 (2018).
Article CAS PubMed Google Scholar
Li, Z. et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49, 640–653.e5 (2018).
Article CAS PubMed Google Scholar
Calvanese, V. & Mikkola, H. K. A. The genesis of human hematopoietic stem cells. Blood 142, 519–532 (2023).
Article CAS PubMed Google Scholar
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).
Article CAS PubMed Google Scholar
Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).
Article CAS PubMed Google Scholar
Tavian, M., Hallais, M. F. & Péault, B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126, 793–803 (1999).
Article CAS PubMed Google Scholar
Tavian, M. et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87, 67–72 (1996).
Article CAS PubMed Google Scholar
Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta–gonad–mesonephros region. J. Exp. Med. 208, 2417–2427 (2011). This study provides evidence that human AGM region HSPCs are serially transplantable and have multilineage potential.
Article CAS PubMed Google Scholar
Charbord, P., Tavian, M., Humeau, L. & Péault, B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87, 4109–4119 (1996).
Article CAS PubMed Google Scholar
Zheng, Z. et al. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 29, 1562–1579.e7 (2022).
Article CAS PubMed Google Scholar
McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).
Article CAS PubMed Google Scholar
Ivarsson, M. A. et al. Differentiation and functional regulation of human fetal NK cells. J. Clin. Invest. 123, 3889–3901 (2013).
Article CAS PubMed PubMed Central Google Scholar
Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).
Article CAS PubMed PubMed Central Google Scholar
Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).
Article CAS PubMed Google Scholar
Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).
Article CAS PubMed Google Scholar
Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).
Article CAS PubMed PubMed Central Google Scholar
Sommarin, M. N. E. et al. Single-cell multiomics of human fetal hematopoiesis define a developmental-specific population and a fetal signature. Blood Adv. 7, 5325–5340 (2023).
Article CAS PubMed PubMed Central Google Scholar
Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199.e22 (2023).
Article CAS PubMed Google Scholar
Vanuytsel, K. et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat. Commun. 13, 1103 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).
Article PubMed PubMed Central Google Scholar
Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891.e20 (2023).
Article CAS PubMed Google Scholar
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
Article CAS PubMed PubMed Central Google Scholar
Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).
Article CAS PubMed PubMed Central Google Scholar
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
留言 (0)