Decoding the human prenatal immune system with single-cell multi-omics

Coller, B. S. Blood at 70: its roots in the history of hematology and its birth. Blood 126, 2548–2560 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godin, I. & Cumano, A. Of birds and mice: hematopoietic stem cell development. Int. J. Dev. Biol. 49, 251–257 (2005). This paper provides a comprehensive review of studies detailing haematopoietic development in model species.

Article  CAS  PubMed  Google Scholar 

Hayakawa, K., Hardy, R. R., Herzenberg, L. A. & Herzenberg, L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161, 1554–1568 (1985). This study is one of the first to identify that the liver, spleen or bone marrow from young mice could repopulate B-1 cells in lethally irradiated recipients, but bone marrow from adult mice could not.

Article  CAS  PubMed  Google Scholar 

Herzenberg, L. A. & Herzenberg, L. A. Toward a layered immune system. Cell 59, 953–954 (1989).

Article  CAS  PubMed  Google Scholar 

Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

Article  CAS  PubMed  Google Scholar 

Vermijlen, D. & Prinz, I. Ontogeny of innate T Lymphocytes — some innate lymphocytes are more innate than others. Front. Immunol. 5, 110132 (2014).

Article  Google Scholar 

Gentek, R. et al. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48, 1160–1171.e5 (2018).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49, 640–653.e5 (2018).

Article  CAS  PubMed  Google Scholar 

Calvanese, V. & Mikkola, H. K. A. The genesis of human hematopoietic stem cells. Blood 142, 519–532 (2023).

Article  CAS  PubMed  Google Scholar 

Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

Article  CAS  PubMed  Google Scholar 

Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

Article  PubMed  Google Scholar 

Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

Article  CAS  PubMed  Google Scholar 

Tavian, M., Hallais, M. F. & Péault, B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126, 793–803 (1999).

Article  CAS  PubMed  Google Scholar 

Tavian, M. et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87, 67–72 (1996).

Article  CAS  PubMed  Google Scholar 

Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta–gonad–mesonephros region. J. Exp. Med. 208, 2417–2427 (2011). This study provides evidence that human AGM region HSPCs are serially transplantable and have multilineage potential.

Article  CAS  PubMed  Google Scholar 

Charbord, P., Tavian, M., Humeau, L. & Péault, B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87, 4109–4119 (1996).

Article  CAS  PubMed  Google Scholar 

Zheng, Z. et al. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 29, 1562–1579.e7 (2022).

Article  CAS  PubMed  Google Scholar 

McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).

Article  CAS  PubMed  Google Scholar 

Ivarsson, M. A. et al. Differentiation and functional regulation of human fetal NK cells. J. Clin. Invest. 123, 3889–3901 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

Article  CAS  PubMed  Google Scholar 

Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

Article  CAS  PubMed  Google Scholar 

Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sommarin, M. N. E. et al. Single-cell multiomics of human fetal hematopoiesis define a developmental-specific population and a fetal signature. Blood Adv. 7, 5325–5340 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199.e22 (2023).

Article  CAS  PubMed  Google Scholar 

Vanuytsel, K. et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat. Commun. 13, 1103 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891.e20 (2023).

Article  CAS  PubMed  Google Scholar 

Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

留言 (0)

沒有登入
gif