Thomas VM, Baby B, Wang K, Lei F, Chen QS, Huang B, Mathew A (2020) Trends in colorectal cancer incidence in India. J Clini Oncol 38:52. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16084
Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, Diakosavvas M, Angelou K, Tsatsaris G, Pagkalos A, Ntounis T, Fasoulakis Z (2020) Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res 40(11):6009–6015. https://doi.org/10.21873/anticanres.14622
Article CAS PubMed Google Scholar
Ponti A, Basu P, Ritchie D, Anttila A, Carvalho AL, Senore C, Mallafré-Larrosa M, Piccinelli C, Ronco G, Soerjomataram I, Primic-Žakelj M, Dillner J, Elfström MK, Lönnberg S, Vale DB, Tomatis M, Armaroli P, Giordano L, Sankaranarayanan R, Segnan N (2020) Key issues that need to be considered while revising the current annex of the European Council Recommendation on cancer screening. Int J Cancer 147(1):9–13. https://doi.org/10.1002/ijc.32885
Article CAS PubMed Google Scholar
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi J, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LC, Goh KW, Hadi MA(2022). Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 14(7):1732. https://doi.org/10.3390/cancers14071732
Beggs AD, Mehta S, Deeks JJ, James JD, Caldwell GM, Dilworth MP, Stockton JD, Blakeway D, Pestinger V, Vince A, Taniere P, Iqbal T, Magill L, Matthews G, Morton DG (2019) ENDCAP-C Module 1 Collaborative. Validation of epigenetic markers to identify colitis associated cancer: results of module 1 of the ENDCAP-C study. EBioMedicine 39:265–271. https://doi.org/10.1016/j.ebiom.2018.11.034
Hinoi T (2021) Cancer genomic profiling in colorectal cancer: current challenges in subtyping colorectal cancers based on somatic and germline variants. J Anus Rectum Colon 5(3):213–228. https://doi.org/10.3389/fonc.2023.1285508
Article CAS PubMed PubMed Central Google Scholar
Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumors. Nat Genet 20(3):291–293
Article CAS PubMed Google Scholar
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT (2020) The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules 25:2857. https://doi.org/10.3390/molecules25122857
Article CAS PubMed PubMed Central Google Scholar
Filograna R, Mennuni M, Alsina D, Larsson NG (2021) Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 595(8):976–1002. https://doi.org/10.1002/1873-3468.14021
Article CAS PubMed Google Scholar
Lee JS, Oh SJ, Choi HJ, Kang JH, Lee SH, Ha JS, Woo SM, Jang H, Lee H, Kim SY (2020) ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma. Cancers (Basel) 12(9):2477. https://doi.org/10.3390/cancers12092477
Article CAS PubMed Google Scholar
Nayak AP, Kapur A, Barroilhet L, Patankar MS (2018) Oxidative phosphorylation: a target for novel therapeutic strategies against ovarian cancer. Cancers (Basel) 10(9):337. https://doi.org/10.3390/cancers10090337
Article CAS PubMed Google Scholar
Schiliro C, Firestein BL (2021) Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 10(5):1056. https://doi.org/10.3390/cells10051056
Article CAS PubMed PubMed Central Google Scholar
Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 12:627837. https://doi.org/10.3389/fphys.2021.627837
Article PubMed PubMed Central Google Scholar
Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9(1):148–163. https://doi.org/10.1158/jcr.1925.148
Hardie DG (2022) 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer 29(12):T1–T13. https://doi.org/10.1530/ERC-22-0173
Article CAS PubMed Google Scholar
Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218. https://doi.org/10.1016/j.tibs.2016.01.004
Article CAS PubMed PubMed Central Google Scholar
Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T (2020) QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 36(6):1765–1771. https://doi.org/10.1093/bioinformatics/btz828
Article CAS PubMed Google Scholar
Rodrigues CHM, Pires DEV, Ascher DB (2021) DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci 30(1):60–69
Article CAS PubMed Google Scholar
Livesey BJ, Marsh JA (2022) The properties of human disease mutations at protein interfaces. PLoS Comput Biol 18(2):e1009858. https://doi.org/10.1371/journal.pcbi.1009858
Article CAS PubMed PubMed Central Google Scholar
Moindjie H, Rodrigues-Ferreira S, Nahmias C (2021) Mitochondrial metabolism in carcinogenesis and cancer therapy. Cancers 13:3311. https://doi.org/10.3390/cancers13133311
Article CAS PubMed PubMed Central Google Scholar
Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, Tintos-Hernandez JA, Singh LN, Karch KR, Campbell SL et al (2019) Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci 116:16028–16035. https://doi.org/10.1073/pnas.1906896116
Article CAS PubMed PubMed Central Google Scholar
Purohit V, Simeone DM, Lyssiotis CA (2019) Metabolic regulation of redox balance in cancer. Cancers 11:955. https://doi.org/10.3390/cancers11070955
Article CAS PubMed PubMed Central Google Scholar
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A (2023) Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 19(4):200–211. https://doi.org/10.1038/s41584-022-00905-1
Article CAS PubMed Google Scholar
Samanic CM, Teer JK, Thompson ZJ, Creed JH, Fridley BL, Burt Nabors L, Williams SL, Egan KM (2022) Mitochondrial DNA sequence variation and risk ofglioma. Mitochondrion 63:32–36. https://doi.org/10.1016/j.mito.2022.01.002
Article CAS PubMed PubMed Central Google Scholar
Saha SK, Saba AA, Hasib M, Rimon RA, Hasan I, Alam MS, Mahmud I, Nabi AHMN (2021) Evaluation of D-loop hypervariable region I variations, haplogroups and copy number of mitochondrial DNA in Bangladeshi population with type 2 diabetes. Heliyon 7(7):e07573. https://doi.org/10.1016/j.heliyon.2021.e07573
Article CAS PubMed PubMed Central Google Scholar
Govatati S, Saradamma B, Malempati S, Dasi D, Thupurani MK, Nagesh N, Shivaji S, Bhanoori M, Tamanam RR, Nallanchakravarthula V, Pasupuleti SR (2017) Association of mitochondrial displacement loop polymorphisms with risk of colorectal cancer in south Indian population. Mitochondrial DNA A DNA Mapp Seq Anal 28(5):632–637. https://doi.org/10.3109/24701394.2016.1160076
Article CAS PubMed Google Scholar
Kim T-M, Sug-Hyung L, Yeun-Jun C (2016) Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol WJG 19(40):6784–6793. https://doi.org/10.3748/wjg.v19.i40.6784
Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, Ghaedi K (2019) Signaling pathways involved in colorectal cancer progression. Cell Biosci 9:97. https://doi.org/10.1186/s13578-019-0361-4
留言 (0)