Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 26(1):13–25. https://doi.org/10.1016/s0896-6273(00)81133-2
Article PubMed CAS Google Scholar
Han D, Tan H, Sun C, Li G (2018) Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med 243(10):852–863. https://doi.org/10.1177/1535370218777972
Baltogiannis G, Conte G, Sieira J, De Ferrari GM, Brugada P (2020) Editorial: sudden cardiac death and channelopathies. Front Cardiovasc Med 7:605834. https://doi.org/10.3389/fcvm.2020.605834
Article PubMed PubMed Central Google Scholar
Arbelo E, Protonotarios A, Gimeno JR et al (2005) 2023 ESC Guidelines for the management of cardiomyopathies. of Brugada Syndrome. Circulation 112(24):3680–87. https://doi.org/10.1161/CIRCULATIONAHA.105.520999. Eur Heart J 44(37):3503–3626. https://doi.org/10.1093/eurheartj/ehad194
Veerman Christiaan C et al (2015) The cardiac sodium channel gene SCN5A and its gene NaV1.5: role in physiology. Gene 573(2):177–87. https://doi.org/10.1016/j.gene.2015.08.062
Article PubMed PubMed Central CAS Google Scholar
Meadows LS, Isom LL (2005) Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res 67(3):448–458. https://doi.org/10.1016/j.cardiores.2005.04.003
Article PubMed CAS Google Scholar
Marchal GA, Remme CA (2023) Subcellular diversity of Nav1.5 in cardiomyocytes: distinct functions mechanisms and targets. J Physiol 601(5):941–60. https://doi.org/10.1113/JP283086
Article PubMed CAS Google Scholar
Veerman CC et al (2015) The cardiac sodium channel gene SCN5A and its gene product nav15: role in physiology and pathophysiology. Gene 573(2):177–87. https://doi.org/10.1016/j.gene.2015.08.062
Article PubMed PubMed Central CAS Google Scholar
WildeArthur AM, Amin AS (2018) Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol 4(5):569–79. https://doi.org/10.1016/j.jacep.2018.03.006
Coronel R et al (2005) Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112(18):2769–77. https://doi.org/10.1161/CIRCULATIONAHA.105.532614
Frustaci A, Priori SG, Pieroni M, Chimenti C, Napolitano C, Rivolta I, Sanna T, Bellocci F, Russo MA (2005) Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 112(24):3680–7. https://doi.org/10.1161/CIRCULATIONAHA.105.520999
Murata K et al (2011) Right ventricular dysfunction in patients with brugada-like electrocardiography: a two dimensional strain imaging study. Cardiovasc Ultrasound 9:30. https://doi.org/10.1186/1476-7120-9-30
Article PubMed PubMed Central Google Scholar
van Hoorn F et al (2012) SCN5A mutations in brugada syndrome are associated with increased cardiac dimensions and reduced contractility. PloS One 7(8):e42037. https://doi.org/10.1371/journal.pone.0042037
Article PubMed PubMed Central CAS Google Scholar
Pappone C et al (2021) Brugada Syndrome: New Insights From Cardiac Magnetic Resonance and Electroanatomical Imaging’. Circulation. Arrhythmia Electrophysiol 14(11):e010004. https://doi.org/10.1161/CIRCEP.121.010004
Bastiaenen R et al (2017) Late gadolinium enhancement in brugada syndrome: a marker for subtle underlying cardiomyopathy? Heart Rhythm 14(4):583–89. https://doi.org/10.1016/j.hrthm.2016.12.004
Hao X et al (2011) TGF-Β1-mediated fibrosis and ion channel remodeling are key mechanisms in producing the sinus node dysfunction associated with SCN5A deficiency and aging. Circ Arrhythmia Electrophysiol 4(3):397–406. https://doi.org/10.1161/CIRCEP.110.960807
Pieroni M et al (2018) Electroanatomic and Pathologic Right Ventricular Outflow Tract Abnormalities in Patients With Brugada Syndrome. J Am Coll Cardiol 72(22):2747–57. https://doi.org/10.1016/j.jacc.2018.09.037
Artico J et al (2020) Lymphocytic myocarditis: a genetically predisposed disease? J Am Coll Cardiol 75(24):3098–100. https://doi.org/10.1016/j.jacc.2020.04.048
Poller W et al (2022) Missense variant E1295K of sodium channel SCN5A associated with recurrent ventricular fibrillation and myocardial inflammation. JACC Case Rep 4(5):280–86. https://doi.org/10.1016/j.jaccas.2022.01.016
Article PubMed PubMed Central Google Scholar
Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, Brugada P, Fressart V, Guerchicoff A, Harris-Kerr C, Kamakura S, Kyndt F, Koopmann TT, Miyamoto Y, Pfeiffer R, Pollevick GD, Probst V, Zumhagen S, Vatta M, Towbin JA, Shimizu W, Schulze-Bahr E, Antzelevitch C, Salisbury BA, Guicheney P, Wilde AA, Brugada R, Schott JJ, Ackerman MJ (2010) An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7(1):33–46. https://doi.org/10.1016/j.hrthm.2009.09.069
McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, Slavov D, Zhu X, Caldwell JH, Mestroni L, Familial Cardiomyopathy Registry Research Group (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57(21):2160–8. https://doi.org/10.1016/j.jacc.2010.09.084
Article PubMed PubMed Central Google Scholar
Weiss JN (2021) Arrhythmias in brugada syndrome. JACC: Clin Electrophysiol 7(2):271–72. https://doi.org/10.1016/j.jacep.2020.12.020
Meregalli PG et al (2005) pathophysiological mechanisms of brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res 67(3):367–78. https://doi.org/10.1016/j.cardiores.2005.03.005
Article PubMed CAS Google Scholar
Hoogendijk MG et al (2010) Mechanism of Right Precordial ST-Segment Elevation in Structural Heart Disease: Excitation Failure by Current-to-Load Mismatch. Heart Rhythm 7(2):238–48. https://doi.org/10.1016/j.hrthm.2009.10.007
Galić E et al (2021) Congenital long QT syndrome: a systematic review. Acta Clin Croat 60(4):739–48. https://doi.org/10.20471/acc.2021.60.04
Article PubMed PubMed Central Google Scholar
Tester DJ, Ackerman MJ (2014) Genetics of long QT syndrome. Methodist DeBakey Cardiovasc J 10(1):29–33. https://doi.org/10.14797/mdcj-10-1-29
Article PubMed PubMed Central Google Scholar
Zareba W et al (1998) Influence of the genotype on the clinical course of the long-QT syndrome. international long-qt syndrome registry research group. N Engl J Med 339(14):960–965. https://doi.org/10.1056/NEJM199810013391404
Article PubMed CAS Google Scholar
Schwartz PJ et al (1995) Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. implications for gene-specific therapy. Circulation 92(12):3381–3386. https://doi.org/10.1161/01.cir.92.12.3381
Article PubMed CAS Google Scholar
Nador F et al (1991) Unsuspected echocardiographic abnormality in the long QT syndrome. diagnostic, prognostic, and pathogenetic implications. Circulation 84(4):1530–1542. https://doi.org/10.1161/01.cir.84.4.1530
Article PubMed CAS Google Scholar
Vijayakumar R et al (2014) Electrophysiologic substrate in congenital long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI). Circulation 130(22):1936–43.
留言 (0)