Preclinical toxicological assessment of amido-bridged nucleic acid-modified antisense oligonucleotides targeting synaptotagmin XIII for intra-abdominal treatment of peritoneal metastasis of gastric cancer

Nakajima TE, Yamaguchi K, Boku N, Hyodo I, Mizusawa J, Hara H, et al. Randomized phase II/III study of 5-fluorouracil/l-leucovorin versus 5-fluorouracil/l-leucovorin plus paclitaxel administered to patients with severe peritoneal metastases of gastric cancer (JCOG1108/WJOG7312G). Gastric Cancer. 2020;23:677–88.

Article  CAS  PubMed  Google Scholar 

Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635–48.

Article  CAS  PubMed  Google Scholar 

Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022;23:234–47.

Article  CAS  PubMed  Google Scholar 

Kanda M, Shimizu D, Tanaka H, Tanaka C, Kobayashi D, Hayashi M, et al. Significance of SYT8 for the detection, prediction, and treatment of peritoneal metastasis from gastric cancer. Ann Surg. 2018;267:495–503.

Article  PubMed  Google Scholar 

Kobayashi D, Ishigami H, Kanda M, Tanaka C, Yamaguchi H, Kitayama J, et al. Phase I study of intraperitoneal administration of paclitaxel combined with S-1 plus cisplatin for gastric cancer with peritoneal metastasis. Oncology. 2020;98:48–52.

Article  CAS  PubMed  Google Scholar 

Ishigami H, Fujiwara Y, Fukushima R, Nashimoto A, Yabusaki H, Imano M, et al. Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial. J Clin Oncol. 2018;36:1922–9.

Article  CAS  PubMed  Google Scholar 

Kobayashi D, Kodera Y, Fukushima R, Morita M, Fushida S, Yamashita N, et al. Phase II study of intraperitoneal administration of paclitaxel combined with S-1 and cisplatin for gastric cancer with peritoneal metastasis. Ann Surg Oncol. 2024;31:735–43.

Article  PubMed  Google Scholar 

Kanda M, Shimizu D, Tanaka H, Tanaka C, Kobayashi D, Hayashi M, et al. Synaptotagmin XIII expression and peritoneal metastasis in gastric cancer. Br J Surg. 2018;105:1349–58.

Article  CAS  PubMed  Google Scholar 

Kanda M, Kasahara Y, Shimizu D, Miwa T, Umeda S, Sawaki K, et al. Amido-bridged nucleic acid-modified antisense oligonucleotides targeting SYT13 to treat peritoneal metastasis of gastric cancer. Mol Ther Nucleic Acids. 2020;22:791–802.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci. 2019;56:533–66.

Article  CAS  PubMed  Google Scholar 

Jung EJ, Suh JH, Kim WH, Kim HS. Clinical significance of PI3K/Akt/mTOR signaling in gastric carcinoma. Int J Clin Exp Pathol. 2020;13:995–1007.

CAS  PubMed  PubMed Central  Google Scholar 

Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, et al. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. ChemBioChem. 2012;13:2513–6.

Article  CAS  PubMed  Google Scholar 

Yamamoto T, Yahara A, Waki R, Yasuhara H, Wada F, Harada-Shiba M, et al. Amido-bridged nucleic acids with small hydrophobic residues enhance hepatic tropism of antisense oligonucleotides in vivo. Org Biomol Chem. 2015;13:3757–65.

Article  CAS  PubMed  Google Scholar 

Hori S, Yamamoto T, Waki R, Wada S, Wada F, Noda M, et al. Ca2+ enrichment in culture medium potentiates effect of oligonucleotides. Nucleic Acids Res. 2015;43:e128.

Article  PubMed  PubMed Central  Google Scholar 

Kanda M, Shimizu D, Sawaki K, Nakamura S, Umeda S, Miwa T, et al. Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer. Mol Cancer. 2020;19:131.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, et al. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron. 2002;35:843–54.

Article  CAS  PubMed  Google Scholar 

Zhang P, Gebhart CJ, Burden D, Duhamel GE. Improved diagnosis of porcine proliferative enteropathy caused by Lawsonia intracellularis using polymerase chain reaction-enzyme-linked oligosorbent assay (PCR-ELOSA). Mol Cell Probes. 2000;14:101–8.

Article  CAS  PubMed  Google Scholar 

Lereau M, Fournier-Wirth C, Mayen J, Farre C, Meyer A, Dugas V, et al. Development of innovative and versatile polythiol probes for use on ELOSA or electrochemical biosensors: application in hepatitis C virus genotyping. Anal Chem. 2013;85:9204–12.

Article  CAS  PubMed  Google Scholar 

Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

Article  PubMed  PubMed Central  Google Scholar 

von Poser C, Sudhof TC. Synaptotagmin 13: structure and expression of a novel synaptotagmin. Eur J Cell Biol. 2001;80:41–7.

Article  Google Scholar 

Nizzardo M, Taiana M, Rizzo F, Aguila Benitez J, Nijssen J, Allodi I, et al. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol. 2020;139:837–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YD, Zhong R, Liu JQ, Sun ZX, Wang T, Liu JT. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways. Clin Transl Oncol. 2023;25:1629–40.

Article  CAS  PubMed  Google Scholar 

Bakhti M, Bastidas-Ponce A, Tritschler S, Czarnecki O, Tarquis-Medina M, Nedvedova E, et al. Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis. Nat Commun. 2022;13:4540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wada F, Yamamoto T, Kobayashi T, Tachibana K, Ito KR, Hamasaki M, et al. Drug discovery and development scheme for liver-targeting bridged nucleic acid antisense oligonucleotides. Mol Ther Nucleic Acids. 2021;26:957–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uehara T, Choong CJ, Nakamori M, Hayakawa H, Nishiyama K, Kasahara Y, et al. Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep. 2019;9:7567.

Article  PubMed  PubMed Central  Google Scholar 

Shimojo M, Kasahara Y, Inoue M, Tsunoda SI, Shudo Y, Kurata T, et al. A gapmer antisense oligonucleotide targeting SRRM4 is a novel therapeutic medicine for lung cancer. Sci Rep. 2019;9:7618.

Article  PubMed  PubMed Central  Google Scholar 

Leishman DJ, Abernathy MM, Wang EB. Revisiting the hERG safety margin after 20 years of routine hERG screening. J Pharmacol Toxicol Methods. 2020;105:106900.

Article  CAS  PubMed  Google Scholar 

Koulgi S, Jani V, Nair V, Saini JS, Phukan S, Sonavane U, et al. Molecular dynamics of hERG channel: insights into understanding the binding of small molecules for detuning cardiotoxicity. J Biomol Struct Dyn. 2022;40:5996–6012.

Article  CAS  PubMed  Google Scholar 

Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol Pathol. 2015;43:78–89.

Article  PubMed  Google Scholar 

Frazier KS. Kidney effects by alternative classes of medicines in patients and relationship to effects in nonclinical toxicity studies. Toxicol Pathol. 2022;50:408–14.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif