Saleh Y, Abdelkarim O, Herzallah K, Abela GS (2021) Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev 26(5):1159–1173. https://doi.org/10.1007/s10741-020-09968-2
Article CAS PubMed Google Scholar
Bernstein D (2018) Anthracycline cardiotoxicity: worrisome enough to have you quaking? Circ Res 122(2):188–190. https://doi.org/10.1161/CIRCRESAHA.117.312395
Article CAS PubMed PubMed Central Google Scholar
Reichardt P, Tabone MD, Mora J, Morland B, Jones RL (2018) Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Fut Oncol 14(25):2663–2676. https://doi.org/10.2217/fon-2018-0210
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H (2018) A review on the effect of traditional chinese medicine against anthracycline-induced cardiac toxicity. Front Pharmacol 9:444. https://doi.org/10.3389/fphar.2018.00444
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Qi F, Cui Y, Zhao L, Sun X, Tang W, Cai P (2018) An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. Biosci Trends 12(3):220–239. https://doi.org/10.5582/bst.2018.01144
Article CAS PubMed Google Scholar
Nasser MI, Zhu S, Hu H, Huang H, Guo M, Zhu P (2019) Effects of imperatorin in the cardiovascular system and cancer. Biomed Pharmacother 120:109401. https://doi.org/10.1016/j.biopha.2019.109401
Article CAS PubMed Google Scholar
Deng M, Xie L, Zhong L, Liao Y, Liu L, Li X (2020) Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol 879:173124. https://doi.org/10.1016/j.ejphar.2020.173124
Article CAS PubMed Google Scholar
Amini P, Nodooshan SJ, Ashrafizadeh M, Aliasgharzadeh A, Vakili Z, Tavakoli S, Aryafar T, Musa AE, Najafi M, Taeb S, Farhood B (2022) Imperatorin attenuates the proliferation of MCF-7 cells in combination with radiotherapy or hyperthermia. Curr Radiopharm 15(3):236–241. https://doi.org/10.2174/1874471015666220318122202
Article CAS PubMed Google Scholar
Xu WW, Huang ZH, Liao L, Zhang QH, Li JQ, Zheng CC, He Y, Luo TT, Wang Y, Hu HF, Zuo Q, Chen WY, Yang QS, Zhao JF, Qin YR, Xu LY, Li EM, Liao HX, Li B, He QY (2020) Direct targeting of CREB1 with imperatorin inhibits TGFβ2-ERK signaling to suppress esophageal cancer metastasis. Adv Sci (Weinh) 7(16):2000925. https://doi.org/10.1002/advs.202000925
Article CAS PubMed Google Scholar
Liang XL, Ji MM, Liao ZG, Zhao GW, Tang XL, Dong W (2022) Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model. Korean J Physiol Pharmacol 26(3):145–155. https://doi.org/10.4196/kjpp.2022.26.3.145
Article CAS PubMed PubMed Central Google Scholar
Wu CP, Murakami M, Li YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV (2023) Imperatorin restores chemosensitivity of multidrug-resistant cancer cells by antagonizing ABCG2-Mediated drug transport. Pharmaceut (Basel) 16(11):1595. https://doi.org/10.3390/ph16111595
Zhang Y, Cao Y, Duan H, Wang H, He L (2012) Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia 83(1):60–66. https://doi.org/10.1016/j.fitote.2011.09.011
Article CAS PubMed Google Scholar
Prasartthong P, Pakdeechote P, Maneesai P, Meephat S, Rattanakanokchai S, Wunpathe C, Apaijit K, Bunbupha S (2022) Imperatorin attenuates cardiac remodelling and dysfunction in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, and Nrf-2 expression. Tissue Cell 75:101728. https://doi.org/10.1016/j.tice.2021.101728
Article CAS PubMed Google Scholar
Zhang M, Wen Y, Liang P, Yang C, Tu H, Wei J, Du J, Zhan T, Liang S, Li G, Gao Y (2023) Imperatorin improves obesity-induced cardiac sympathetic nerve injury mediated by P2X4 receptor in stellate sympathetic ganglion. Int J Mol Sci 24(1):783. https://doi.org/10.3390/ijms24010783
Article CAS PubMed PubMed Central Google Scholar
Wei S, Ma W, Li X, Jiang C, Sun T, Li Y, Zhang B, Li W (2020) Involvement of ROS/NLRP3 inflammasome signaling pathway in doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 20(5):507–519. https://doi.org/10.1007/s12012-020-09576-4
Article CAS PubMed Google Scholar
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T (2019) Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 317(5):H891–H922. https://doi.org/10.1152/ajpheart.00259.2019
Article CAS PubMed PubMed Central Google Scholar
Ye B, Shi X, Xu J, Dai S, Xu J, Fan X, Han B, Han J (2022) Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage. Transl Res 248:36–50. https://doi.org/10.1016/j.trsl.2022.05.001
Article CAS PubMed Google Scholar
Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G (2021) Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Naunyn Schmiedeb Arch Pharmacol 394(10):2003–2011. https://doi.org/10.1007/s00210-021-02132-z
Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J, Mi Y (2022) LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 113(Pt A):109379. https://doi.org/10.1016/j.intimp.2022.109379
Article CAS PubMed Google Scholar
Shahid MH, Anjum I, Mushtaq MN, Riaz S (2021) Cardioprotective effect of boswellic acids against doxorubicin induced myocardial infarction in rats. Pak J Pharm Sci 34(1 (Supplementary)):359–365
Cao YJ, He X, Wang N, He LC (2013) Effects of imperatorin, the active component from Radix Angelicae (Baizhi), on the blood pressure and oxidative stress in 2K,1C hypertensive rats. Phytomedicine 20(12):1048–1054. https://doi.org/10.1016/j.phymed.2013.04.021
Article CAS PubMed Google Scholar
Tang X, Gan XT, Jong CJ, Rajapurohitam V, Karmazyn M (2021) Inhibition of angiotensin II-induced hypertrophy and cardiac dysfunction by North American ginseng (Panax quinquefolius). Can J Physiol Pharmacol 99(5):512–521. https://doi.org/10.1139/cjpp-2020-0480
Article CAS PubMed Google Scholar
Hwang S, Kim SH, Yoo KH, Chung MH, Lee JW, Son KH (2022) Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol 23(1):55. https://doi.org/10.1186/s12860-022-00454-1
Article CAS PubMed PubMed Central Google Scholar
Fan R, Wang Y, Zhang J, An X, Liu S, Bai J, Li J, Lin Q, Xie Y, Liao J, Xia Y (2023) Hyperhomocysteinaemia promotes doxorubicin-induced cardiotoxicity in mice. Pharmaceut (Basel) 16(9):1212. https://doi.org/10.3390/ph16091212
Zhang Z, Peng J, Hu Y, Zeng G, Du W, Shen C (2023) CTRP5 attenuates doxorubicin-induced cardiotoxicity via inhibiting TLR4/NLRP3 signaling. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-023-07464-x
Willis MS, Parry TL, Brown DI, Mota RI, Huang W, Beak JY, Sola M, Zhou C, Hicks ST, Caughey MC, D’Agostino RB Jr, Jordan J, Hundley WG, Jensen BC (2019) Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ Heart Fail 12(3):e005234. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005234
Article CAS PubMed PubMed Central Google Scholar
Chen DS, Yan J, Yang PZ (2022) Cardiomyocyte atrophy, an underestimated contributor in doxorubicin-induced cardiotoxi
留言 (0)