Delineating cysteine-reactive compound modulation of cellular proteostasis processes

Boatner, L. M., Palafox, M. F., Schweppe, D. K. & Backus, K. M. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem. Biol. 30, 683–698 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, J. et al. Multiplexed CuAAC Suzuki–Miyaura labeling for tandem activity-based chemoproteomic profiling. Anal. Chem. 93, 2610–2618 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, T. et al. SP3-FAIMS chemoproteomics for high-coverage profiling of the human cysteinome. ChemBioChem 22, 1841–1851 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burton, N. R. et al. Solid-phase compatible silane-based cleavable linker enables custom isobaric quantitative chemoproteomics. J. Am. Chem. Soc. 145, 21303–21318 (2023).

Article  CAS  PubMed  Google Scholar 

Mader, M. M. et al. Which small molecule? Selecting chemical probes for use in cancer research and target validation. Cancer Discov. 13, 2150–2165 (2023).

Article  PubMed  Google Scholar 

Antolin, A. A. et al. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res. 51, D1492–D1502 (2023).

Article  PubMed  Google Scholar 

Hartung, I. V., Rudolph, J., Mader, M. M., Mulder, M. P. C. & Workman, P. Expanding chemical probe space: quality criteria for covalent and degrader probes. J. Med. Chem. 66, 9297–9312 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kavanagh, M. E. et al. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat. Chem. Biol. 18, 1388–1398 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e17 (2018).

Article  CAS  PubMed  Google Scholar 

Dickson, P. et al. Physical and functional analysis of the putative rpn13 inhibitor RA190. Cell Chem. Biol. 27, 1371–1382 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anchoori, R. K. et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24, 791–805 (2013).

Article  CAS  PubMed  Google Scholar 

Gamayun, I. et al. Eeyarestatin compounds selectively enhance Sec61-mediated Ca2+ leakage from the endoplasmic reticulum. Cell Chem. Biol. 26, 571–583 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971.e17 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Othumpangat, S., Kashon, M. & Joseph, P. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. Mol. Cell. Biochem. 279, 123–131 (2005).

Article  CAS  PubMed  Google Scholar 

Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

Article  CAS  PubMed  Google Scholar 

García-Mata, R., Bebök, Z., Sorscher, E. J. & Sztul, E. S. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254 (1999).

Article  PubMed  PubMed Central  Google Scholar 

Forte, N. et al. Targeted Protein Degradation through E2 Recruitment. ACS Chem. Biol. 18, 897–904 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, Y. et al. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. J. Am. Chem. Soc. 144, 18688–18699 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. DCAF11 supports targeted protein degradation by electrophilic proteolysis targeting chimeras. J. Am. Chem. Soc. 143, 5141–5149 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henning, N. J. et al. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. J. Am. Chem. Soc. 144, 701–708 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isobe, Y. et al. Manumycin polyketides act as molecular glues between UBR7 and P53. Nat. Chem. Biol. 16, 1189–1198 (2020).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif