Boatner, L. M., Palafox, M. F., Schweppe, D. K. & Backus, K. M. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem. Biol. 30, 683–698 (2023).
Article CAS PubMed PubMed Central Google Scholar
Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).
Article CAS PubMed PubMed Central Google Scholar
Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).
Article CAS PubMed PubMed Central Google Scholar
Cao, J. et al. Multiplexed CuAAC Suzuki–Miyaura labeling for tandem activity-based chemoproteomic profiling. Anal. Chem. 93, 2610–2618 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026 (2020).
Article CAS PubMed PubMed Central Google Scholar
Yan, T. et al. SP3-FAIMS chemoproteomics for high-coverage profiling of the human cysteinome. ChemBioChem 22, 1841–1851 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).
Article CAS PubMed PubMed Central Google Scholar
Burton, N. R. et al. Solid-phase compatible silane-based cleavable linker enables custom isobaric quantitative chemoproteomics. J. Am. Chem. Soc. 145, 21303–21318 (2023).
Article CAS PubMed Google Scholar
Mader, M. M. et al. Which small molecule? Selecting chemical probes for use in cancer research and target validation. Cancer Discov. 13, 2150–2165 (2023).
Antolin, A. A. et al. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res. 51, D1492–D1502 (2023).
Hartung, I. V., Rudolph, J., Mader, M. M., Mulder, M. P. C. & Workman, P. Expanding chemical probe space: quality criteria for covalent and degrader probes. J. Med. Chem. 66, 9297–9312 (2023).
Article CAS PubMed PubMed Central Google Scholar
Kavanagh, M. E. et al. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat. Chem. Biol. 18, 1388–1398 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
Article CAS PubMed PubMed Central Google Scholar
Janes, M. R. et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172, 578–589.e17 (2018).
Article CAS PubMed Google Scholar
Dickson, P. et al. Physical and functional analysis of the putative rpn13 inhibitor RA190. Cell Chem. Biol. 27, 1371–1382 (2020).
Article CAS PubMed PubMed Central Google Scholar
Anchoori, R. K. et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell 24, 791–805 (2013).
Article CAS PubMed Google Scholar
Gamayun, I. et al. Eeyarestatin compounds selectively enhance Sec61-mediated Ca2+ leakage from the endoplasmic reticulum. Cell Chem. Biol. 26, 571–583 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971.e17 (2018).
Article CAS PubMed PubMed Central Google Scholar
Othumpangat, S., Kashon, M. & Joseph, P. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death. Mol. Cell. Biochem. 279, 123–131 (2005).
Article CAS PubMed Google Scholar
Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).
Article CAS PubMed Google Scholar
García-Mata, R., Bebök, Z., Sorscher, E. J. & Sztul, E. S. Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254 (1999).
Article PubMed PubMed Central Google Scholar
Forte, N. et al. Targeted Protein Degradation through E2 Recruitment. ACS Chem. Biol. 18, 897–904 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tao, Y. et al. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. J. Am. Chem. Soc. 144, 18688–18699 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, X. et al. DCAF11 supports targeted protein degradation by electrophilic proteolysis targeting chimeras. J. Am. Chem. Soc. 143, 5141–5149 (2021).
Article CAS PubMed PubMed Central Google Scholar
Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).
Article CAS PubMed PubMed Central Google Scholar
Henning, N. J. et al. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. J. Am. Chem. Soc. 144, 701–708 (2022).
Article CAS PubMed PubMed Central Google Scholar
Isobe, Y. et al. Manumycin polyketides act as molecular glues between UBR7 and P53. Nat. Chem. Biol. 16, 1189–1198 (2020).
留言 (0)