The development of the occurrence and metastasis of breast cancer by single-cell sequencing

Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes Migration and Invasion of breast Cancer cells. Oncogene. 2009;28(30):2745–55.

PubMed  PubMed Central  CAS  Google Scholar 

World Health Organization. Global Health estimates 2016: disease burden by cause, Age, Sex, by Country and by Region, 2000–2016. World Health Organization; 2021.

Siegel RL, Miller KD, Wagle NS, Jemal A, Cancer statistics. 2023. CA: A Cancer Journal for Clinicians [Internet]. 2023;73(1):17–48. https://acsjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.3322/caac.21763

J F. Global Cancer Obser-Vatory: Cancer Today. International Agency for Research on Cancer; Lyon, France: 2020. 2021.

Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Bioscience. 2019;9(1).

Lei Y, Tang R, Wang W. Applications of single-cell sequencing in Cancer research: progress and perspectives. J Hematol Oncol. 2021;14(1):91.

PubMed  PubMed Central  Google Scholar 

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods [Internet]. 2009;6(5):377–82. https://www.nature.com/articles/nmeth.1315

Potter SS. Single-cell RNA Sequencing for the Study of development, Physiology and Disease. Nature Reviews Nephrology [Internet]. 2018;14(8):479–92. https://www.nature.com/articles/s41581-018-0021-7

Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M et al. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell [Internet]. 2020 Aug 10 [cited 2022 Oct 21];38(2):229–246.e13. https://www.sciencedirect.com/science/article/pii/S1535610820303160?via%3Dihub

Garcia-Bonilla L, Shahanoor Z, Sciortino R, Nazarzoda O, Racchumi G, Iadecola C et al. Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nature Immunology [Internet]. 2024 Feb 1 [cited 2024 Jul 22];25(2):357–70. https://www.nature.com/articles/s41590-023-01711-x

Philpott M, Cribbs A, Cribbs T. Advances and challenges in Epigenomic single-cell sequencing applications. Curr Opin Chem Biol. 2020;57:17–26.

PubMed  CAS  Google Scholar 

Huang D et al. Advances in single-cell RNA sequencing and its applications in Cancer Research. J Hematol Oncol. 16(1).

Han B, Zhou S, Zhang Y, Chen S, Xi W, Liu C et al. Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci Transl Med. 2024;16(733).

Rizzo J, Bernabe R. Key principles and clinical applications of NextGeneration DNA sequencing. Cancer Prev Res (Phila). 2012;5(7):887–900.

PubMed  CAS  Google Scholar 

Podnar J, Deiderick H, Huerta G, Hunicke-Smith S. Next‐Generation sequencing RNA‐Seq Library Construction. Curr Protoc Mol Biol. 2014;106(1).

Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW, Maslov AY et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Science Advances [Internet]. 2020 Jan 1 [cited 2021 May 24];6(5):eaax2659. https://advances.sciencemag.org/content/6/5/eaax2659

Evrony GD, Hinch AG, Luo C. Applications of single-cell DNA sequencing. Annu Rev Genom Hum Genet. 2021;22(1).

Pomerantz MM, Qiu X, Zhu Y, Takeda DY, Pan W, Baca SC, et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52(8):790–9.

PubMed  PubMed Central  CAS  Google Scholar 

Pastore A, Gaiti F, Lu SX, Brand RM, Kulm S, Chaligne R et al. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications [Internet]. 2019 Apr 23 [cited 2019 Nov 13];10(1). https://www.nature.com/articles/s41467-019-09645-5

Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature [Internet]. 2020 Oct 28 [cited 2020 Nov 5];1–6. https://www.nature.com/articles/s41586-020-2864-x

Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, et al. Epigenetic switch–Induced viral mimicry evasion in chemotherapy-resistant breast Cancer. Cancer Discov. 2020;10(9):1312–29.

PubMed  CAS  Google Scholar 

Petelski AA, Emmott E, Leduc A, Huffman RG, Specht H, Perlman DH et al. Multiplexed single-cell proteomics using SCoPE2. Nature Protocols [Internet]. 2021 Dec 1 [cited 2023 Apr 5];16(12):5398–425. https://www.nature.com/articles/s41596-021-00616-z#data-availability

Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.

PubMed  CAS  Google Scholar 

Mali SB. Single cell proteomics. Potential applications in Head and Neck oncology. Oral Oncol. 2023;146:106586–6.

PubMed  CAS  Google Scholar 

Mund A, Brunner AD, Mann M. Unbiased spatial proteomics with single-cell resolution in tissues. Molecular Cell [Internet]. 2022 Jun 16 [cited 2022 Nov 22];82(12):2335–49. https://pubmed.ncbi.nlm.nih.gov/35714588/

Zenobi R. Single-Cell Metabolomics: Analytical and Biological Perspectives. Science. 2013;342(6163).

Nemes P, Knolhoff AM, Rubakhin SS, Sweedler JV. Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. ACS Chem Neurosci. 2012;3(10):782–92.

PubMed  PubMed Central  CAS  Google Scholar 

Thanh D, Comi TJ, Sage, Rubakhin SS, Sweedler JV. Single cell profiling using Ionic Liquid Matrix-enhanced secondary Ion Mass Spectrometry for neuronal cell type differentiation. Anal Chem. 2017;89(5):3078–86.

Google Scholar 

Xu S, Liu M, Bai Y, Liu H. Multi-dimensional Organic Mass Cytometry: simultaneous analysis of proteins and metabolites on single cells. Angew Chem. 2020;133(4):1834–40.

Google Scholar 

Sun M, Yang Z. Metabolomic studies of live single Cancer stem cells using Mass Spectrometry. Anal Chem. 2018;91(3):2384–91.

Google Scholar 

Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Translational Med. 2022;12(3).

Bronner IF, Lorenz S. Combined genome and transcriptome (G&T) sequencing of single cells. Methods Mol Biol. 2019;319–62.

Fan X, Lu P, Wang H, Bian S, Wu X, Zhang Y et al. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discovery. 2022;8(1).

Hinyard L, Wirth LS, Clancy JM, Schwartz T. The effect of marital status on breast cancer-related outcomes in women under 65: a SEER database analysis. Breast. 2017;32:13–7.

PubMed  Google Scholar 

Suzuki Y, Tsunoda H, Kimura T, Yamauchi H. BMI change and abdominal circumference are risk factors for breast cancer, even in Asian women. Breast Cancer Res Treat. 2017;166(3):919–25.

PubMed  Google Scholar 

Godoy-Ortiz A, Sanchez-Muñoz A, Chica Parrado MR, Álvarez M, Ribelles N, Rueda Dominguez A et al. Deciphering HER2 breast Cancer Disease: Biological and Clinical implications. Front Oncol. 2019;9.

Jain AK, Barton MC. p53: emerging roles in stem cells, development and beyond. Development [Internet]. 2018 Apr 13 [cited 2020 Jan 2];145(8):dev158360. https://dev.biologists.org/content/145/8/dev158360

Bruno RD, Smith GH. Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Semin Cell Dev Biol. 2012;23(5):591–8.

PubMed  PubMed Central  CAS  Google Scholar 

Uzzan B, Nicolas P, Cucherat M. PerretGY. Microvessel Density as a prognostic factor in women with breast Cancer. Cancer Res. 2004;64(9):2941–55.

PubMed  CAS  Google Scholar 

Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, Salomon DS, et al. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by Interaction with the Mammary Microenvironment. PLoS ONE. 2013;8(4):e62019–9.

PubMed  PubMed Central  CAS  Google Scholar 

Cella D, Kallich J, McDermott A, Xu X. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann Oncol. 2004;15(6):979–86.

PubMed  CAS  Google Scholar 

Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun. 2018;9(1).

Sun H, Zeng J, Miao Z, Kuan Cheok Lei, Huang C, Hu L et al. Dissecting the heterogeneity and tumorigenesis of BRCA1 deficient mammary tumors via single cell RNA sequencing. 2021 Jan 1 [cited 2023 Jun 28];11(20):9967–87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581428/

Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1).

Hu L, Su L, Cheng H, Mo C, Ouyang T, Li J et al. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Research [Internet]. 2021 May 15 [cited 2023 Apr 19];81(10):2600–11. https://pubmed.ncbi.nlm.nih.gov/33727227/

Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2).

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5).

Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R, et al. BRCA1 basal-like breast cancers originate from Luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7(3):403–17.

PubMed  CAS  Google Scholar 

Hou J, Liu W, Yan M, Ren Y, Qian C, Fu Y et al. Unveiling heterogeneity and prognostic markers in ductal breast cancer through single-cell RNA-seq. Cancer Cell Int. 2024;24(1).

Zhang Y, Zhen F, Sun Y. Single-cell RNA sequencing reveals small extracellular vesicles derived from malignant cells that contribute to angiogenesis in human breast cancers. J Transl Med. 2023;21(1):372.

PubMed  PubMed Central  Google Scholar 

Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–34.

PubMed  CAS  Google Scholar 

Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes & Diseases; 2020.

Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.

PubMed  CAS  Google Scholar 

Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1).

Janiszewska M, Tabassum DP, Castaño Z, Cristea S, Yamamoto KN, Kingston NL, et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat Cell Biol. 2019;21(7):879–88.

PubMed  PubMed Central  CAS  Google Scholar 

Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communications [Internet]. 2018;9:5150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279758/

Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, et al. CCL18 from Tumor-Associated macrophages promotes breast Cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–55.

PubMed  PubMed Central  CAS  Google Scholar 

Xu K, Zhang W, Wang C, Hu L, Wang R, Wang C, et al. Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer. Hum Mol Genet. 2021;30(5):370–80.

PubMed  CAS  Google Scholar 

Wang Q, Bergholz J, Ding L, Lin Z, Sheheryar Kabraji, Hughes ME et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13(1).

Chen J, Zhou Y, Wu M, Yuan Y, Wu W. m6A modification mediates exosomal LINC00657 to trigger breast Cancer Progression Via inducing macrophage M2 polarization. Clin Breast Cancer. 2023;23(5):546–60.

PubMed  CAS  Google Scholar 

Xie Z, Huang J, Li Y. Single-cell RNA sequencing revealed potential targets for immunotherapy studies in hepatocellular carcinoma. Sci Rep. 2023;13(18799).

留言 (0)

沒有登入
gif