Walter M, Liang S, Ghosh S, Hornsby PJ, Li R. Interleukin 6 secreted from adipose stromal cells promotes Migration and Invasion of breast Cancer cells. Oncogene. 2009;28(30):2745–55.
PubMed PubMed Central CAS Google Scholar
World Health Organization. Global Health estimates 2016: disease burden by cause, Age, Sex, by Country and by Region, 2000–2016. World Health Organization; 2021.
Siegel RL, Miller KD, Wagle NS, Jemal A, Cancer statistics. 2023. CA: A Cancer Journal for Clinicians [Internet]. 2023;73(1):17–48. https://acsjournals.onlinelibrary.wiley.com/doi/https://doi.org/10.3322/caac.21763
J F. Global Cancer Obser-Vatory: Cancer Today. International Agency for Research on Cancer; Lyon, France: 2020. 2021.
Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Bioscience. 2019;9(1).
Lei Y, Tang R, Wang W. Applications of single-cell sequencing in Cancer research: progress and perspectives. J Hematol Oncol. 2021;14(1):91.
PubMed PubMed Central Google Scholar
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods [Internet]. 2009;6(5):377–82. https://www.nature.com/articles/nmeth.1315
Potter SS. Single-cell RNA Sequencing for the Study of development, Physiology and Disease. Nature Reviews Nephrology [Internet]. 2018;14(8):479–92. https://www.nature.com/articles/s41581-018-0021-7
Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, Trakala M et al. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer Cell [Internet]. 2020 Aug 10 [cited 2022 Oct 21];38(2):229–246.e13. https://www.sciencedirect.com/science/article/pii/S1535610820303160?via%3Dihub
Garcia-Bonilla L, Shahanoor Z, Sciortino R, Nazarzoda O, Racchumi G, Iadecola C et al. Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nature Immunology [Internet]. 2024 Feb 1 [cited 2024 Jul 22];25(2):357–70. https://www.nature.com/articles/s41590-023-01711-x
Philpott M, Cribbs A, Cribbs T. Advances and challenges in Epigenomic single-cell sequencing applications. Curr Opin Chem Biol. 2020;57:17–26.
Huang D et al. Advances in single-cell RNA sequencing and its applications in Cancer Research. J Hematol Oncol. 16(1).
Han B, Zhou S, Zhang Y, Chen S, Xi W, Liu C et al. Integrating spatial and single-cell transcriptomics to characterize the molecular and cellular architecture of the ischemic mouse brain. Sci Transl Med. 2024;16(733).
Rizzo J, Bernabe R. Key principles and clinical applications of NextGeneration DNA sequencing. Cancer Prev Res (Phila). 2012;5(7):887–900.
Podnar J, Deiderick H, Huerta G, Hunicke-Smith S. Next‐Generation sequencing RNA‐Seq Library Construction. Curr Protoc Mol Biol. 2014;106(1).
Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW, Maslov AY et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Science Advances [Internet]. 2020 Jan 1 [cited 2021 May 24];6(5):eaax2659. https://advances.sciencemag.org/content/6/5/eaax2659
Evrony GD, Hinch AG, Luo C. Applications of single-cell DNA sequencing. Annu Rev Genom Hum Genet. 2021;22(1).
Pomerantz MM, Qiu X, Zhu Y, Takeda DY, Pan W, Baca SC, et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52(8):790–9.
PubMed PubMed Central CAS Google Scholar
Pastore A, Gaiti F, Lu SX, Brand RM, Kulm S, Chaligne R et al. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nature Communications [Internet]. 2019 Apr 23 [cited 2019 Nov 13];10(1). https://www.nature.com/articles/s41467-019-09645-5
Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy R et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature [Internet]. 2020 Oct 28 [cited 2020 Nov 5];1–6. https://www.nature.com/articles/s41586-020-2864-x
Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, et al. Epigenetic switch–Induced viral mimicry evasion in chemotherapy-resistant breast Cancer. Cancer Discov. 2020;10(9):1312–29.
Petelski AA, Emmott E, Leduc A, Huffman RG, Specht H, Perlman DH et al. Multiplexed single-cell proteomics using SCoPE2. Nature Protocols [Internet]. 2021 Dec 1 [cited 2023 Apr 5];16(12):5398–425. https://www.nature.com/articles/s41596-021-00616-z#data-availability
Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50.
Mali SB. Single cell proteomics. Potential applications in Head and Neck oncology. Oral Oncol. 2023;146:106586–6.
Mund A, Brunner AD, Mann M. Unbiased spatial proteomics with single-cell resolution in tissues. Molecular Cell [Internet]. 2022 Jun 16 [cited 2022 Nov 22];82(12):2335–49. https://pubmed.ncbi.nlm.nih.gov/35714588/
Zenobi R. Single-Cell Metabolomics: Analytical and Biological Perspectives. Science. 2013;342(6163).
Nemes P, Knolhoff AM, Rubakhin SS, Sweedler JV. Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. ACS Chem Neurosci. 2012;3(10):782–92.
PubMed PubMed Central CAS Google Scholar
Thanh D, Comi TJ, Sage, Rubakhin SS, Sweedler JV. Single cell profiling using Ionic Liquid Matrix-enhanced secondary Ion Mass Spectrometry for neuronal cell type differentiation. Anal Chem. 2017;89(5):3078–86.
Xu S, Liu M, Bai Y, Liu H. Multi-dimensional Organic Mass Cytometry: simultaneous analysis of proteins and metabolites on single cells. Angew Chem. 2020;133(4):1834–40.
Sun M, Yang Z. Metabolomic studies of live single Cancer stem cells using Mass Spectrometry. Anal Chem. 2018;91(3):2384–91.
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Translational Med. 2022;12(3).
Bronner IF, Lorenz S. Combined genome and transcriptome (G&T) sequencing of single cells. Methods Mol Biol. 2019;319–62.
Fan X, Lu P, Wang H, Bian S, Wu X, Zhang Y et al. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discovery. 2022;8(1).
Hinyard L, Wirth LS, Clancy JM, Schwartz T. The effect of marital status on breast cancer-related outcomes in women under 65: a SEER database analysis. Breast. 2017;32:13–7.
Suzuki Y, Tsunoda H, Kimura T, Yamauchi H. BMI change and abdominal circumference are risk factors for breast cancer, even in Asian women. Breast Cancer Res Treat. 2017;166(3):919–25.
Godoy-Ortiz A, Sanchez-Muñoz A, Chica Parrado MR, Álvarez M, Ribelles N, Rueda Dominguez A et al. Deciphering HER2 breast Cancer Disease: Biological and Clinical implications. Front Oncol. 2019;9.
Jain AK, Barton MC. p53: emerging roles in stem cells, development and beyond. Development [Internet]. 2018 Apr 13 [cited 2020 Jan 2];145(8):dev158360. https://dev.biologists.org/content/145/8/dev158360
Bruno RD, Smith GH. Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Semin Cell Dev Biol. 2012;23(5):591–8.
PubMed PubMed Central CAS Google Scholar
Uzzan B, Nicolas P, Cucherat M. PerretGY. Microvessel Density as a prognostic factor in women with breast Cancer. Cancer Res. 2004;64(9):2941–55.
Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, Salomon DS, et al. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by Interaction with the Mammary Microenvironment. PLoS ONE. 2013;8(4):e62019–9.
PubMed PubMed Central CAS Google Scholar
Cella D, Kallich J, McDermott A, Xu X. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann Oncol. 2004;15(6):979–86.
Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun. 2018;9(1).
Sun H, Zeng J, Miao Z, Kuan Cheok Lei, Huang C, Hu L et al. Dissecting the heterogeneity and tumorigenesis of BRCA1 deficient mammary tumors via single cell RNA sequencing. 2021 Jan 1 [cited 2023 Jun 28];11(20):9967–87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581428/
Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1).
Hu L, Su L, Cheng H, Mo C, Ouyang T, Li J et al. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Research [Internet]. 2021 May 15 [cited 2023 Apr 19];81(10):2600–11. https://pubmed.ncbi.nlm.nih.gov/33727227/
Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2).
Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5).
Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R, et al. BRCA1 basal-like breast cancers originate from Luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7(3):403–17.
Hou J, Liu W, Yan M, Ren Y, Qian C, Fu Y et al. Unveiling heterogeneity and prognostic markers in ductal breast cancer through single-cell RNA-seq. Cancer Cell Int. 2024;24(1).
Zhang Y, Zhen F, Sun Y. Single-cell RNA sequencing reveals small extracellular vesicles derived from malignant cells that contribute to angiogenesis in human breast cancers. J Transl Med. 2023;21(1):372.
PubMed PubMed Central Google Scholar
Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–34.
Malla RR, Kiran P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes & Diseases; 2020.
Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.
Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9(1).
Janiszewska M, Tabassum DP, Castaño Z, Cristea S, Yamamoto KN, Kingston NL, et al. Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat Cell Biol. 2019;21(7):879–88.
PubMed PubMed Central CAS Google Scholar
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nature Communications [Internet]. 2018;9:5150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279758/
Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, et al. CCL18 from Tumor-Associated macrophages promotes breast Cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–55.
PubMed PubMed Central CAS Google Scholar
Xu K, Zhang W, Wang C, Hu L, Wang R, Wang C, et al. Integrative analyses of scRNA-seq and scATAC-seq reveal CXCL14 as a key regulator of lymph node metastasis in breast cancer. Hum Mol Genet. 2021;30(5):370–80.
Wang Q, Bergholz J, Ding L, Lin Z, Sheheryar Kabraji, Hughes ME et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13(1).
Chen J, Zhou Y, Wu M, Yuan Y, Wu W. m6A modification mediates exosomal LINC00657 to trigger breast Cancer Progression Via inducing macrophage M2 polarization. Clin Breast Cancer. 2023;23(5):546–60.
Xie Z, Huang J, Li Y. Single-cell RNA sequencing revealed potential targets for immunotherapy studies in hepatocellular carcinoma. Sci Rep. 2023;13(18799).
留言 (0)