Alvarez-Builla, J., Vaquero, J.J., and Barluenga, J., Modern Heterocycl. Chemistry, Weinheim: Wiley-VCH, 2011, Vol. 4, p. 1989. https://doi.org/10.1002/9783527637737
Ebenezer, O., Jordaan, M.A., Carena, G., Bono, T., Shapi, M., and Tuszynski, J.A., Int. J. Mol. Sci., 2022, vol. 23, p. 8117. https://doi.org/10.3390/ijms23158117
Jampilek, J., Molecules, 2019, vol. 24, p. 3839. https://doi.org/10.3390/molecules24213839
Heravi, M.M. and Zadsirjan, V., RSC Adv., 2020, vol. 72, p. 44247. https://doi.org/10.1039/d0ra09198g
Jasiewicz, B., Kozanecka-Okupnik, W., Przygodzki, M., Warżajtis, B., Rychlewska, U., Pospieszny, T., and Mrówczyńska, L., Sci. Rep., 2021, vol. 11, p. 1. https://doi.org/10.1038/s41598-021-94904-z
Dorababu, A., RSC Med. Chem., 2020, vol. 11, p. 1335. https://doi.org/10.1039/d0md00288g
Article PubMed PubMed Central Google Scholar
Song, F., Li, Z., Bian, Y., Huo, X., Fang, J., Shao, L., and Zhou, M., Arch. Pharm., 2020, vol. 353, p. 1. https://doi.org/10.1002/ardp.202000143
Zheng, S., Jiang, Q., Massande, G.N., Wu, W., Lin, C., Fang, Y., Tan, Y., and Zhu, R., Chem. Nat. Compd., 2023, vol. 59, p. 111. https://doi.org/10.1007/s10600-023-03929-5
Rudrapal, M., Celik, I., Chinnam, S., Çevik, U.A., Tallei, T.E., Nizam, A., Joy, F., Abdellattif, M.H., and Walode, S.G., Polycycl. Arom. Compd., 2023, vol. 43, p. 7732. https://doi.org/10.1080/10406638.2022.2139733
Chauhan, M., Saxena, A., and Saha, B., Eur. J. Med. Chem., 2021, vol. 218, p. 113400. https://doi.org/10.1016/j.ejmech.2021.113400
Sahu, N.K., Sharma, R., Suhas, K.P., Joshi, J., Prakash, K., Sharma, R., Pratap, R., Hu, X., Kaur, S., Jain, M., and Coluccini, C., Molecules, 2023, vol. 28, p. 4817. https://doi.org/10.3390/molecules28124817
Article PubMed PubMed Central Google Scholar
Kaur, H., Singh, J., and Narasimhan, B., BMC Chem., 2019, vol. 13, p. 1. https://doi.org/10.1186/s13065-019-0580-0
Kanagarajan, H., Gunabalan, M., Kajbafvala, A., Narayanan, A., Sompalle, R., and Roopan, S. M., ChemInform, 2014, vol. 45, p. 1. https://doi.org/10.1002/chin.201431259
Makawana, J.A., Sangani, C.B., Yao, Y.F., Duan, Y.T., Lv, P.C., and Zhu, H.L., Mini-Rev. Med. Chem., 2016, vol. 16, p. 1303. https://doi.org/10.2174/1389557516666160823143243
Aroob, S., Carabineiro, S.A.C., Taj, M.B., Bibi, I., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., and Sillanpää, M., Catalysts, 2023, vol. 13, p. 1. https://doi.org/10.3390/catal13030502
Naz, S., Gul, A., Zia, M., and Javed, R., Appl. Microbiol. Biotechnol., 2023, vol. 107, p. 1039. https://doi.org/10.1007/s00253-023-12364-z
Article PubMed PubMed Central Google Scholar
Dobrucka, R., J. Inorg. Organomet. Polym. Mater., 2018, vol. 28, p. 812. https://doi.org/10.1007/s10904-017-0750-2
Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., and Hussin, S.M., J. Colloid Interface Sci., 2016, vol. 466, p. 113. https://doi.org/10.1016/j.jcis.2015.12.018
Khalil, A., Fihri, A., Jouiad, M., and Hashaikeh, R., Tetrahedron Lett., 2014, vol. 55, p. 5973. https://doi.org/10.1016/j.tetlet.2014.08.120
Khan, G.A., War, J.A., Naikoo, G.A., Pandit, U.J., and Das, R., J. Saudi Chem. Soc., 2018, vol. 22, p. 6. https://doi.org/10.1016/j.jscs.2016.03.009
Patel, M., Mishra, S., Verma, R., and Shikha, D., Discov. Mater., 2022, vol. 2, p. 1. https://doi.org/10.1007/s43939-022-00022-6
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., et al., Gaussian 09, Revision B.01. Gaussian Inc., Wallingford., Gaussian 09W, Revision D.01, Gaussian, Inc., Wallingford CT 2013.
Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372. https://doi.org/10.1063/1.464304
Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/physrevb.37.785
Raghavachari, K., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955
McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72 p. 5639. https://doi.org/10.1063/1.438980
Li, X. and Frisch, M.J., J. Chem. Theory Comput., 2006, vol. 2, p. 835. https://doi.org/10.1021/ct050275a
Kudin, K.N., Scuseria, G.E., and Cancès, E., J. Chem. Phys., 2002, vol. 116, p. 8255. https://doi.org/10.1063/1.1470195
GaussView 6.0.16, Gaussian, Inc, Wallingford CT, 2016.
Koopmans, T., Physica, 1934, vol. 1, p. 104. https://doi.org/10.1016/s0031-8914(34)90011-2
Janak, J.F., Phys. Rev. (B), 1978, vol. 18, p. 7165. https://doi.org/10.1103/physrevb.18.7165
Perdew, J.P., Parr, R.G., Levy, M., and Balduz, J.L., Phys. Rev. Lett., 1982, vol. 49, p. 1691. https://doi.org/10.1103/physrevlett.49.1691
Perdew, J.P. and Levy, M., Phys. Rev. Lett., 1983, vol. 51, p. 1884. https://doi.org/10.1103/physrevlett.51.1884
Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512. https://doi.org/10.1021/ja00364a005
Pearson, R.G., Proc. Natl. Acad. Sci. USA, 1986, vol. 83, p. 8440. https://doi.org/10.1073/pnas.83.22.8440
Article PubMed PubMed Central Google Scholar
Parr, R.G., Szentpaly, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x
Gazquez, J.L., Cedillo, A., and Vela, A., J. Phys. Chem. (A), 2007, vol. 111, p. 1966. https://doi.org/10.1021/jp065459f
Gomez, B., Likhanova, N.V., DomínguezAguilar, M.A.,Martínez-Palou, R.,Vela, A., and Gazquez, J.L., J. Phys. Chem. B, 2006, vol. 110, p. 8928. https://doi.org/10.1021/jp057143y
Daina, A., Michielin, O., and Zoete, V., J. Chem. Inf. Model., 2014, vol. 54, p. 3284. https://doi.org/10.1021/ci500467k
Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., and Lai, L., J. Chem. Inf. Model., 2007, vol. 47 p. 2140. https://doi.org/10.1021/ci700257y
Wildman, S.A. Crippen, G.M., J. Chem. Inf. Comp. Sci., 1999, vol. 39, p. 868. https://doi.org/10.1021/ci990307l
Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 2012, vol. 64, p. 4. https://doi.org/10.1016/j.addr.2012.09.019
Silicos-it. https://www.silicos-it.be
Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, p. 1. https://doi.org/10.1038/srep42717
Delaney, J.S., J. Chem. Inf. Comp. Sci., 2004, vol. 44, p. 1000. https://doi.org/10.1021/ci034243x
Ali, J., Camilleri, P., Brown, M.B., Hutt, A.J., and Kirton, S.B., J. Chem. Inf. Model., 2012, vol 52, p. 2950. https://doi.org/10.1021/ci300447c
Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J., J. Comb. Chem., 1999, vol. 1, p. 55. https://doi.org/10.1021/cc9800071
Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D., J. Med. Chem., 2002, vol. 45, p. 2615. https://doi.org/10.1021/jm020017n
Egan, W.J., Merz, K.M., and Baldwin, J.J., J. Med. Chem., 2000, vol. 43, p. 3867. https://doi.org/10.1021/jm000292e
Muegge, I., Heald, S.L., and Brittelli, D., J. Med. Chem., 2001, vol. 44, p. 1841. https://doi.org/10.1021/jm015507e
Martin, Y.C., J. Med. Chem., 2005 vol. 48, p. 3164. https://doi.org/10.1021/jm0492002
Huber, K.P., and Herzberg, G., Molecular Spectra and Molecular Structure IV, New York: D. Van Nostrand Reinhold, Inc., 1979. https://doi.org/10.1007/978-1-4757-0961-2
Hill, T.L., An Introduction to Statistical Thermodynamics, London: Addison- Wesley Publishing, Inc., 1962. https://doi.org/10.1002/bbpc.19620660121
Serdaroğlu, G., Int. J. Quantum Chem., 2010, vol. 111, p. 3938. https://doi.org/10.1002/qua.22809
留言 (0)