CuO-Catalyzed Synthesis, Characterization, and Computational Studies of Ethyl 2-Cyano-3-(1H-indol-3-yl)-3-phenylpropanoate Derivatives

Alvarez-Builla, J., Vaquero, J.J., and Barluenga, J., Modern Heterocycl. Chemistry, Weinheim: Wiley-VCH, 2011, Vol. 4, p. 1989. https://doi.org/10.1002/9783527637737

Ebenezer, O., Jordaan, M.A., Carena, G., Bono, T., Shapi, M., and Tuszynski, J.A., Int. J. Mol. Sci., 2022, vol. 23, p. 8117. https://doi.org/10.3390/ijms23158117

Jampilek, J., Molecules, 2019, vol. 24, p. 3839. https://doi.org/10.3390/molecules24213839

Heravi, M.M. and Zadsirjan, V., RSC Adv., 2020, vol. 72, p. 44247. https://doi.org/10.1039/d0ra09198g

Article  Google Scholar 

Jasiewicz, B., Kozanecka-Okupnik, W., Przygodzki, M., Warżajtis, B., Rychlewska, U., Pospieszny, T., and Mrówczyńska, L., Sci. Rep., 2021, vol. 11, p. 1. https://doi.org/10.1038/s41598-021-94904-z

Article  Google Scholar 

Dorababu, A., RSC Med. Chem., 2020, vol. 11, p. 1335. https://doi.org/10.1039/d0md00288g

Article  PubMed  PubMed Central  Google Scholar 

Song, F., Li, Z., Bian, Y., Huo, X., Fang, J., Shao, L., and Zhou, M., Arch. Pharm., 2020, vol. 353, p. 1. https://doi.org/10.1002/ardp.202000143

Article  Google Scholar 

Zheng, S., Jiang, Q., Massande, G.N., Wu, W., Lin, C., Fang, Y., Tan, Y., and Zhu, R., Chem. Nat. Compd., 2023, vol. 59, p. 111. https://doi.org/10.1007/s10600-023-03929-5

Rudrapal, M., Celik, I., Chinnam, S., Çevik, U.A., Tallei, T.E., Nizam, A., Joy, F., Abdellattif, M.H., and Walode, S.G., Polycycl. Arom. Compd., 2023, vol. 43, p. 7732. https://doi.org/10.1080/10406638.2022.2139733

Chauhan, M., Saxena, A., and Saha, B., Eur. J. Med. Chem., 2021, vol. 218, p. 113400. https://doi.org/10.1016/j.ejmech.2021.113400

Sahu, N.K., Sharma, R., Suhas, K.P., Joshi, J., Prakash, K., Sharma, R., Pratap, R., Hu, X., Kaur, S., Jain, M., and Coluccini, C., Molecules, 2023, vol. 28, p. 4817. https://doi.org/10.3390/molecules28124817

Article  PubMed  PubMed Central  Google Scholar 

Kaur, H., Singh, J., and Narasimhan, B., BMC Chem., 2019, vol. 13, p. 1. https://doi.org/10.1186/s13065-019-0580-0

Kanagarajan, H., Gunabalan, M., Kajbafvala, A., Narayanan, A., Sompalle, R., and Roopan, S. M., ChemInform, 2014, vol. 45, p. 1. https://doi.org/10.1002/chin.201431259

Article  Google Scholar 

Makawana, J.A., Sangani, C.B., Yao, Y.F., Duan, Y.T., Lv, P.C., and Zhu, H.L., Mini-Rev. Med. Chem., 2016, vol. 16, p. 1303. https://doi.org/10.2174/1389557516666160823143243

Aroob, S., Carabineiro, S.A.C., Taj, M.B., Bibi, I., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., and Sillanpää, M., Catalysts, 2023, vol. 13, p. 1. https://doi.org/10.3390/catal13030502

Naz, S., Gul, A., Zia, M., and Javed, R., Appl. Microbiol. Biotechnol., 2023, vol. 107, p. 1039. https://doi.org/10.1007/s00253-023-12364-z

Article  PubMed  PubMed Central  Google Scholar 

Dobrucka, R., J. Inorg. Organomet. Polym. Mater., 2018, vol. 28, p. 812. https://doi.org/10.1007/s10904-017-0750-2

Article  Google Scholar 

Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., and Hussin, S.M., J. Colloid Interface Sci., 2016, vol. 466, p. 113. https://doi.org/10.1016/j.jcis.2015.12.018

Khalil, A., Fihri, A., Jouiad, M., and Hashaikeh, R., Tetrahedron Lett., 2014, vol. 55, p. 5973. https://doi.org/10.1016/j.tetlet.2014.08.120

Khan, G.A., War, J.A., Naikoo, G.A., Pandit, U.J., and Das, R., J. Saudi Chem. Soc., 2018, vol. 22, p. 6. https://doi.org/10.1016/j.jscs.2016.03.009

Patel, M., Mishra, S., Verma, R., and Shikha, D., Discov. Mater., 2022, vol. 2, p. 1. https://doi.org/10.1007/s43939-022-00022-6

Article  Google Scholar 

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., et al., Gaussian 09, Revision B.01. Gaussian Inc., Wallingford., Gaussian 09W, Revision D.01, Gaussian, Inc., Wallingford CT 2013.

Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372. https://doi.org/10.1063/1.464304

Article  Google Scholar 

Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. https://doi.org/10.1103/physrevb.37.785

Article  Google Scholar 

Raghavachari, K., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955

Article  Google Scholar 

McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72 p. 5639. https://doi.org/10.1063/1.438980

Article  Google Scholar 

Li, X. and Frisch, M.J., J. Chem. Theory Comput., 2006, vol. 2, p. 835. https://doi.org/10.1021/ct050275a

Article  PubMed  Google Scholar 

Kudin, K.N., Scuseria, G.E., and Cancès, E., J. Chem. Phys., 2002, vol. 116, p. 8255. https://doi.org/10.1063/1.1470195

Article  Google Scholar 

GaussView 6.0.16, Gaussian, Inc, Wallingford CT, 2016.

Koopmans, T., Physica, 1934, vol. 1, p. 104. https://doi.org/10.1016/s0031-8914(34)90011-2

Article  Google Scholar 

Janak, J.F., Phys. Rev. (B), 1978, vol. 18, p. 7165. https://doi.org/10.1103/physrevb.18.7165

Perdew, J.P., Parr, R.G., Levy, M., and Balduz, J.L., Phys. Rev. Lett., 1982, vol. 49, p. 1691. https://doi.org/10.1103/physrevlett.49.1691

Article  Google Scholar 

Perdew, J.P. and Levy, M., Phys. Rev. Lett., 1983, vol. 51, p. 1884. https://doi.org/10.1103/physrevlett.51.1884

Article  Google Scholar 

Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512. https://doi.org/10.1021/ja00364a005

Article  Google Scholar 

Pearson, R.G., Proc. Natl. Acad. Sci. USA, 1986, vol. 83, p. 8440. https://doi.org/10.1073/pnas.83.22.8440

Article  PubMed  PubMed Central  Google Scholar 

Parr, R.G., Szentpaly, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x

Article  Google Scholar 

Gazquez, J.L., Cedillo, A., and Vela, A., J. Phys. Chem. (A), 2007, vol. 111, p. 1966. https://doi.org/10.1021/jp065459f

Article  PubMed  Google Scholar 

Gomez, B., Likhanova, N.V., DomínguezAguilar, M.A.,Martínez-Palou, R.,Vela, A., and Gazquez, J.L., J. Phys. Chem. B, 2006, vol. 110, p. 8928. https://doi.org/10.1021/jp057143y

Daina, A., Michielin, O., and Zoete, V., J. Chem. Inf. Model., 2014, vol. 54, p. 3284. https://doi.org/10.1021/ci500467k

Article  PubMed  Google Scholar 

Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., and Lai, L., J. Chem. Inf. Model., 2007, vol. 47 p. 2140. https://doi.org/10.1021/ci700257y

Article  PubMed  Google Scholar 

Wildman, S.A. Crippen, G.M., J. Chem. Inf. Comp. Sci., 1999, vol. 39, p. 868. https://doi.org/10.1021/ci990307l

Article  Google Scholar 

Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 2012, vol. 64, p. 4. https://doi.org/10.1016/j.addr.2012.09.019

Article  Google Scholar 

Silicos-it. https://www.silicos-it.be

Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, p. 1. https://doi.org/10.1038/srep42717

Article  Google Scholar 

Delaney, J.S., J. Chem. Inf. Comp. Sci., 2004, vol. 44, p. 1000. https://doi.org/10.1021/ci034243x

Article  Google Scholar 

Ali, J., Camilleri, P., Brown, M.B., Hutt, A.J., and Kirton, S.B., J. Chem. Inf. Model., 2012, vol 52, p. 2950. https://doi.org/10.1021/ci300447c

Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J., J. Comb. Chem., 1999, vol. 1, p. 55. https://doi.org/10.1021/cc9800071

Article  PubMed  Google Scholar 

Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D., J. Med. Chem., 2002, vol. 45, p. 2615. https://doi.org/10.1021/jm020017n

Article  PubMed  Google Scholar 

Egan, W.J., Merz, K.M., and Baldwin, J.J., J. Med. Chem., 2000, vol. 43, p. 3867. https://doi.org/10.1021/jm000292e

Article  PubMed  Google Scholar 

Muegge, I., Heald, S.L., and Brittelli, D., J. Med. Chem., 2001, vol. 44, p. 1841. https://doi.org/10.1021/jm015507e

Article  PubMed  Google Scholar 

Martin, Y.C., J. Med. Chem., 2005 vol. 48, p. 3164. https://doi.org/10.1021/jm0492002

Article  PubMed  Google Scholar 

Huber, K.P., and Herzberg, G., Molecular Spectra and Molecular Structure IV, New York: D. Van Nostrand Reinhold, Inc., 1979. https://doi.org/10.1007/978-1-4757-0961-2

Hill, T.L., An Introduction to Statistical Thermodynamics, London: Addison- Wesley Publishing, Inc., 1962. https://doi.org/10.1002/bbpc.19620660121

Serdaroğlu, G., Int. J. Quantum Chem., 2010, vol. 111, p. 3938. https://doi.org/10.1002/qua.22809

Article 

留言 (0)

沒有登入
gif