Rümmeli, M.H., Rocha, C.G., Ortmann, F., Ibrahim, I., Sevincli, H., Boerrnert, F., Kunstmann J, Bachmatiuk A, Pötschke M, Shiraishi M, Meyyappan, M., Büchner B, Roche S., and Cuniberti, G., Adv. Mater., 2011, vol. 23, p. 4471. https://doi.org/10.1002/adma.201101855
Yang, G., Li, L., Lee, W.B., and Ng, M.C., Sci. Technol. Adv. Mater., 2018, vol. 19, p. 613. https://doi.org/10.1080/14686996.2018.1494493
Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., and Shepard, K.L., Nat. Nanotechnol., 2008, vol. 3, p. 654. https://doi.org/10.1038/nnano.2008.268
Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., and Sheehan, P.E., Nano Lett., 2008, vol. 8, p. 3137. https://doi.org/10.1021/nl8013007
Mohanty, N. and Berry, V., Nano Lett., 2008 vol. 8, p. 4469. https://doi.org/10.1021/nl802412n
Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., ACS Nano., 2008, vol. 2, p. 463. https://doi.org/10.1021/nn700375n
Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., and Cui, Y., and Dai, H., Nano Lett., 2011, vol. 11, p. 2644. https://doi.org/10.1021/nl200658a
Shin, D.S., Kim, H.G., Ahn, H.S., Jeong, H.Y., Kim, Y.J., Odkhuu, D., Tsogbadrakhf, N., Lee, H.B.R., and Kim, B.H., RSC Adv., 2017, vol. 7, p. 13979. https://doi.org/10.1039/C7RA00114B
Kumar, V., Kumar, A., Lee, D.J., and Park, S.S., Materials, 2021, vol. 14, p. 4590. https://doi.org/10.3390/ma14164590
Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., and Bai, J., Appl. Phys. Lett., 2011, vol. 99, p. 1. https://doi.org/10.1063/1.3607305
He, H., Riedl, T., Lerf, A., and Klinowski, J., J. Phys. Chem., 1996, vol. 100, p. 19954. https://doi.org/10.1021/jp961563t
Ruoff, R., Nat. Nanotechnol., 2008, vol. 3, p. 10. https://doi.org/10.1038/nnano.2007.432
Sofer, Z., Šimek, P., Jankovský, O., Sedmidubský, D., Beran, P., and Pumera, M., Nanoscale., 2014, vol. 6, p. 13082. https://doi.org/10.1039/c4nr04644g
Wilson, N.R., Pandey, P.A., Beanland, R., Young, R.J., Kinloch, I.A., Gong, L., Liu, Z., Suenaga, K., Rourke, J.P., York S.J., and Sloan, J., ACS Nano., 2009, vol. 3, p. 2547. https://doi.org/10.1021/nn900694t
Nováček, M., Jankovský, O., Luxa, J., Sedmidubský, D., Pumera, M., Fila, V., Lhotka, M., Klímová, K., Matějková, S., and Sofer, Z., J. Mater. Chem. (A), 2017, vol. 5, p. 2739. https://doi.org/10.1039/C6TA03631G
Hofmann, U., and Holst, R., Ber. Dtsch. Chem. Ges., 1939, vol. 72, p. 754. https://doi.org/10.1002/cber.19390720417
Ruess, G., Monatsh. Chem., 1947, vol. 76, p. 38. https://doi.org/10.1007/BF00898987
Scholz, W., and Boehm, H.P., Zeit. anorg. allg. Chem., 1969, vol. 369, p. 327. https://doi.org/10.1002/zaac.19693690322
Lojka, M., Lochman, B., Jankovský, O., Jiříčková, A., Sofer, Z., and Sedmidubský, D., Materials, 2019, vol. 12, p. 2367. https://doi.org/10.3390/ma12152367
Dimiev, A.M., Alemany, L.B., and Tour, J.M., ACS Nano, 2013, vol. 7, p. 576. https://doi.org/10.1021/nn3047378
Lu, Y., Huang, L., Guo, Y., and Yang, X., Carbon, 2021, vol. 183, p. 355. https://doi.org/10.1016/j.carbon.2021.07.026
Liu, Z., Nørgaard, K., Overgaard, M.H., Ceccato, M., Mackenzie, D.M., Stenger, N., Stipp, S.L.S., and Hassenkam, T., Carbon, 2018, vol. 127, p. 141. https://doi.org/10.1016/j.carbon.2017.10.100
Sun, L., Chin. J. Chem. Eng., 2019, vol. 27, p. 2251. https://doi.org/10.1016/j.cjche.2019.05.003
López-Dı́az, D., Merchán, M.D., Velázquez, M.M., and Maestro, A., ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 25453. https://doi.org/10.1021/acsami.0c05649
Sofer, Z., Jankovský, O., Šimek, P., Soferová, L., Sedmidubský, D., and Pumera, M., Nanoscale, 2014, vol. 6, p. 2153. https://doi.org/10.1039/c3nr05407a
Jiříčková, A., Jankovský, O., Sofer, Z., and Sedmidubský, D., Materials, 2022, vol. 15, p. 920. https://doi.org/10.3390/ma15030920
Bonanni, A., Ambrosi, A., Chua, C.K., and Pumera, M., ACS Nano, 2014, vol. 8, p. 4197. https://doi.org/10.1021/nn404255q
Kedir, A., Gamachu, M., and Alex, A.G., J. Nanomater., 2023, vol. 2023. https://doi.org/10.1155/2023/6741000
Thirupathi, R., Reddy, Y.J., Prabhakaran, E.N., and Atreya, H.S., J. Chem. Sci., 2014, vol. 126, p. 541.
Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., and Wilson, N.R., Angew Chem Int Ed Engl., 2011, vol. 50, p. 3173. https://doi.org/10.1002/anie.201007520
Brodie, B., Ann. Chim. Phys., 1855, vol. 45, p. 351.
Brodie, B.C., Phil. Trans. R. Soc., 1859, vol. 149, p. 249. https://doi.org/10.1098/rstl.1859.0013
Staudenmaier, L., Ber. Dtsch. Chem. Ges., 1898, vol. 31, p. 1481. https://doi.org/10.1002/cber.18980310237
Jankovský, O., Nováček, M., Luxa, J., Sedmidubský, D., Boháčová, M., Pumera, M., and Sofer, Z., Chem. Eur. J., 2017, vol. 23, p. 6432. https://doi.org/10.1002/chem.201700809
Hummers Jr, W.S., and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339. https://doi.org/10.1021/ja01539a017
Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S.A., Buzaneva, E.V., and Gorchinskiy, A.D., Chem. Mater., 1999, vol. 11, p. 771. https://doi.org/10.1021/cm981085u
Eigler, S., Chem. Commun., 2015, vol. 51, p. 3162. https://doi.org/10.1039/C4CC09381J
Yu, H., Zhang, B., Bulin, C., Li, R., and Xing, R., Sci. Rep., 2016, vol. 6, p. 1. https://doi.org/10.1038/srep36143
Grimm, S., Schweiger, M., Eigler, S., and Zaumseil, J., J. Phys. Chem. ©, 2016, vol. 120, p. 3036. https://doi.org/10.1021/acs.jpcc.5b11598
Chen, H., Du, W., Liu, J., Qu, L., and Li, C., Chem. Sci., 2019, vol. 10, p. 1244. https://doi.org/10.1039/C8SC03695K
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M., ACS Nano, 2010, vol. 4, p. 480. https://doi.org/10.1021/nn1006368
Betancur, A.F., Ornelas-Soto, N., Garay-Tapia, A.M., Pérez, F.R., Salazar, Á., and García, A.G., Mater. Chem. Phys., 2018, vol. 218, p. 51. https://doi.org/10.1016/j.matchemphys.2018.07.019
Ishikawa, T., Kanemaru, T., Teranishi, H., and Onishi, K., Patent US 4094951, 1978.
Dreyer, D.R., Park, S., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228. https://doi.org/10.1039/B917103G
Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., Zhao, X., and Gao, C., Nat. Commun., 2015, vol. 6, p. 5716.
Sofer, Z., Luxa, J., Jankovský, O., Sedmidubský, D., Bystroň, T., and Pumera, M., Angew. Chem. Int. Ed., 2016, vol. 55, p. 11965. https://doi.org/10.1002/anie.201603496
Yu, C., Wang, C. F., and Chen, S., Sci. Rep., 2016, vol. 6, p. 17071. https://doi.org/10.1038/srep17071
Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., and Ye, M., Chem. Mater., 2009, vol. 21, p. 3514. https://doi.org/10.1021/cm901247t
Jankovský, O., Lojka, M., Jiříčková, A., Aneziris, C.G., Storti, E., and Sedmidubský, D., Materials, 2020, vol. 13, p. 2006. https://doi.org/10.3390/ma13082006
Ranjan, P., Agrawal, S., Sinha, A., Rao, T.R., Balakrishnan, J., and Thakur, A.D., Sci. Rep., 2018, vol. 8, p. 12007. https://doi.org/10.1038/s41598-018-32556-2
Alex, A.G., Kedir, A., and Tewele, T.G., Constr. Build. Mater., 2022, vol. 360, p. 129609. https://doi.org/10.1016/j.conbuildmat.2022.129609
Yu, P., Tian, Z., Lowe, S. E., Song, J., Ma, Z., Wang, X., Han, Z.J., Bao, Q., Simon, G.P., Li, D., and Zhong, Y.L., Chem. Mater., 2016, vol. 28, p. 8429. https://doi.org/10.1021/acs.chemmater.6b04415
Pei, S., Wei, Q., Huang, K., Cheng, H. M., and Ren, W., Nat. Commun., 2018, vol. 9, p. 145. https://doi.org/10.1038/s41467-017-02479-z
Zhu, C., Liu, L., Fan, M., Liu, L., Dai, B., Yang, J., and Sun, D., RSC Adv., 2014, vol. 4, p. 55044. https://doi.org/10.1039/C4RA09827G
Jankovský, O., Nováček, M., Luxa, J., Sedmidubský, D., Fila, V., Pumera, M., and Sofer, Z., Chem. Eur. J., 2016, vol. 22, p. 17416. https://doi.org/10.1002/chem.201603766
Bakandritsos, A., Pykal, M., Błoński, P., Jakubec, P., Chronopoulos, D. D., Poláková, K., Georgakilas, V., Čépe, K., Tomanec, O., Ranc, V., Bourlinos, A.B., Zbořil, R., and Otyepka, M., ACS Nano, 2017, vol. 11, p. 2982. https://doi.org/10.1021/acsnano.6b08449
Mao, S., Yu, K., Lu, G., and Chen, J., Nano Res., 2011, vol. 4, p. 921. https://doi.org/10.1007/s12274-011-0148-3
Trung, T.Q., Tien, N.T., Kim, D., Jang, M., Yoon, O.J., and Lee, N.E., Adv. Funct. Mater., 2014, vol. 24, p. 117. https://doi.org/10.1002/adfm.201301845
Aspermair, P., Mishyn, V., Bintinger, J., Happy, H., Bagga, K., Subramanian, P., Knoll, W., Boukherroub, R., and Szunerits, S., Anal. Bioanal. Chem., 2021, vol. 6, p. 1. https://doi.org/10.1007/s00216-020-02879-z
Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., and Zhang, G.J., ACS Nano, 2014, vol. 8, p. 2632. https://doi.org/10.1021/nn4063424
Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L., and Robinson, N.D., ACS Nano, 2010, vol. 4, p. 637. https://doi.org/10.1021/nn9018569
Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., and Ruoff, R.S., Carbon, 2010, vol. 48, p. 2118. https://doi.org/10.1016/j.carbon.2010.02.001
Hansora, D.P., Shimpi, N.G., and Mishra, S., JOM, 2015, vol. 67, p. 2855. https://doi.org/10.1007/s11837-015-1522-5
Zhou, G., Wang, D. W., Li, F., Zhang, L., Li, N., Wu, Z.S., Wen, L., Lu, G.Q., and Cheng, H.M., Chem. Mater., 2010, vol. 22, p. 5306. https://doi.org/10.1021/cm101532x
Aneja, K.S., Böhm, H.M., Khanna, A.S., and Böhm, S., FlatChem, vol. 1, p. 11. https://doi.org/10.1016/j.flatc.2016.08.003
Ghauri, F.A., Raza, M.A., Baig, M.S., and Ibrahim, S., Mater. Res. Express., 2017, vol. 4, p. 125601. https://doi.org/10.1088/2053-1591/aa9aac
Singh, S., Hasan, M. R., Sharma, P., and Narang, J., Sens. Int., 2022.vol. 3, p.100190. https://doi.org/10.1016/j.sintl.2022.100190
Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., J. Phys. Chem. (B)., 2006, vol. 110, p. 8535. https://doi.org/10.1021/jp060936f
Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., and Cheng, H.M., Carbon, 2009, vol. 47, p. 493. https://doi.org/10.1016/j.carbon.2008.10.031
Jankovský, O., Šimek, P., Luxa, J., Sedmidubský, D., Tomandl, I., Macková, A., Mikšová, R., Malinský, P., Pumera, M., and Sofer, Z., ChemPlusChem, 2015, vol. 80, p. 1399. https://doi.org/10.1002/cplu.201500168
McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I.A.,Chem. Mater., 2007, vol. 19, p. 4396. https://doi.org/10.1021/cm0630800
Sofer, Z., Jankovsky, O., Simek, P., Sedmidubsky, D., Sturala, J., Kosina, J., Mikšová, R., Macková, A., Mikulics, M., and Pumera, M., ACS Nano, 2015, vol. 9, p. 5478. https://doi.org/10.1021/acsnano.5b01463
Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., and Car, R., Nano Lett., 2008, vol. 8, p. 36. https://doi.org/10.1021/nl071822y
Jankovský, O., Kučková, Š.H., Pumera, M., Šimek, P., Sedmidubský, D., and Sofer, Z., New J. Chem., 2014, vol. 38, p. 5700. https://doi.org/10.1039/C4NJ00871E
Jankovský, O., Lojka, M., Nováček, M., Luxa, J., Sedmidubský, D., Pumera, M., Kosina, J., and Sofer, Z., Green Chem., 2016, vol. 18, p. 6618. https://doi.org/10.1039/C6GC02491B
Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., and Chhowalla, M., Adv. Funct. Mater., 2009, vol. 19, p. 2577. https://doi.org/10.1002/adfm.200900166
Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, p. 323. https://doi.org/10.1021/nl072838r
Wu, Z.S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., and Cheng, H.M., ACS Nano, 2009, vol. 3, p. 411. https://doi.org/10.1021/nn900020u
Jin, Y., Zheng, Y., Podkolzin, S.G., and Lee, W., J. Mater. Chem. (C), 2020, vol. 8, p. 4885. https://doi.org/10.1039/C9TC07063J
Kotov, N.A., Dékány, I., and Fendler, J.H., Adv. Mater., vol. 8, p. 637. https://doi.org/10.1002/adma.19960080806
Zhang, X., Li, K., Li, H., Lu, J., Fu, Q., and Chu, Y., Synth. Met., 2014, vol. 193, p. 132. https://doi.org/10.1016/j.synthmet.2014.04.007
Cai, D. and Song, M., J. Mater. Chem., 2007, vol. 17, p. 3678. https://doi.org/10.1039/B705906J
Novoselov, K.S., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K.A.J.N., Nature, 2012, vol. 490, p. 192. https://doi.org/10.1038/nature11458
Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., MartínezAlonso, A., and Tascón, J.M.D., J. Phys. Chem. (C), 2010, vol. 114, no 14, p. 6426. https://doi.org/10.1021/jp100603h
Šimek, P., Sofer, Z., Jankovský, O., Sedmidubský, D., and Pumera, M., Adv. Funct. Mater., 2014, vol. 24, p. 4878. https://doi.org/10.1002/adfm.201304284
Jankovský, O., Šimek, P., Sedmidubský, D., Matějková, S., Janoušek, Z., Šembera, F., Pumera, M., and Sofer, Z., RSC Adv., 2014, vol. 4, p. 1378. https://doi.org/10.1039/C3RA45183F
Mazánek, V., Jankovský, O., Luxa, J., Sedmidubský, D., Janoušek, Z., Šembera, F., Mikulics, M., and Sofer, Z., Nanoscale, 2015, vol. 7, p. 13646. https://doi.org/10.1039/C5NR03243A
Chronopoulos, D.D., Bakandritsos, A., Pykal, M., Zbořil, R., and Otyepka, M., Appl. Mater. Today, 2017, vol. 9, p. 60. https://doi.org/10.1016/j.apmt.2017.05.004
Lazar, P., Otyepková, E., Karlický, F., Čépe, K., and Otyepka, M., Carbon, 2015, vol. 94, p. 804. https://doi.org/10.1016/j.carbon.2015.07.064
Zbořil, R., Karlický, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Šafářová, K., Jančík, D., Trapalis, C., and Otyepka, M., Small, 2010, vol. 6, p. 2885. https://doi.org/10.1002/smll.201001401
Cheng, S.H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Sofo, J.O., and Zhu, J., Phys. Rev. (B), 2010, vol. 81, p. 205435. https://doi.org/10.1103/PhysRevB.81.205435
Zhang, M., Ma, Y., Zhu, Y., Che, J., and Xiao, Y., Carbon, 2013 vol. 63, p. 149. https://doi.org/10.1016/j.carbon.2013.06.066
Sun, C., Feng, Y., Li, Y., Qin, C., Zhang, Q., and Feng, W., Nanoscale, 2014, vol. 6, p. 2634. https://doi.org/10.1039/C3NR04609E
Zhu, M., Xie, X., Guo, Y., Chen, P., Ou, X., Yu, G., and Liu, M., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20992. https://doi.org/10.1039/c3cp53383b
Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F. K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., and Snow, E.S., Nano Lett., 2010, vol. 10, p. 3001. https://doi.org/10.1021/nl101437p
Bouša, D., Mazánek, V., Sedmidubský, D., Jankovský, O., Pumera, M., and Sofer, Z., Chemistry, 2018, vol. 24, p. 8350. https://doi.org/10.1002/chem.201800236
Jankovský, O., Lojka, M., Lauermannová, A.M., Antončík, F., Pavlíková, M., Záleská, M., Pavlík, Z., Pivák, A., and Sedmidubský, D., Appl. Mater. Today, 2020, vol. 20, p. 100766. https://doi.org/10.1016/j.apmt.2020.100766
Aliyev, E.M., Khan, M.M., Nabiyev, A.M., Alosmanov, R.M., Bunyad-Zadeh, I. A., Shishatskiy, S., and Filiz, V., Nanoscale Res. Lett., 2018, vol. 13, p. 1. https://doi.org/10.1186/s11671-018-2771-3
Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., Wang, D., Xie, G., Shi, D., and Zhang, G., Carbon, 2012, vol. 50, p. 2581. https://doi.org/10.1016/j.carbon.2012.02.016
Li, J., Vaisman, L., Marom, G., and Kim, J.K., Carbon, 2007, vol. 45, p. 744. https://doi.org/10.1016/j.carbon.2006.11.031
Krishnamoorthy, K., Mohan, R., and Kim, S.J., Appl. Phys. Lett., 2011, vol. 98, no. 24, p. 244101. https://doi.org/10.1063/1.3599453
Krishnamoorthy, K., Veerapandian, M., Yun, K., and Kim, S.J., Carbon, vol. 53, p. 38. https://doi.org/10.1016/j.carbon.2012.10.013
Venugopal, G., Krishnamoorthy, K., Mohan, R., and Kim, S.J., Mater. Chem. Phys., 2012, vol. 132, p. 29. https://doi.org/10.1016/j.matchemphys.2011.10.040
Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., J. Electron Spectrosc. Relat. Phenomena, 2014, vol. 195, p. 145. https://doi.org/10.1016/j.elspec.2014.07.003
Gupta, V., Sharma, N., Singh, U., Arif, M., and Singh, A., Optik, 2017, vol. 143, p. 115. https://doi.org/10.1016/j.ijleo.2017.05.100
Guerrero-Contreras, J. and Caballero-Briones, F., Mater. Chem. Phys., 2015, vol. 153, p. 209. https://doi.org/10.1016/j.matchemphys.2015.01.005
Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., and Atieh, M.A., Ceram. Int., 2019, vol. 45, p. 14439. https://doi.org/10.1016/j.ceramint.2019.04.165
Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C., and Yang, Q.H., Carbon, 2013, vol. 62, p. 11. https://doi.org/10.1016/j.carbon.2013.05.033
Zhao, J., Pei, S., Ren, W., Gao, L., and Cheng, H.M., ACS Nano, 2010, vol. 4, p. 5245. https://doi.org/10.1021/nn1015506
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S., Nature, 2007, vol. 448, p. 457. https://doi.org/10.1038/nature06016
Lv, S., Zhang, J., Zhu, L., and Jia, C., Materials, 2016, vol. 9, p. 924. https://doi.org/10.3390/ma9110924
Li, F., Jiang, X., Zhao, J., and Zhang, S., Nano Energy, 2015, vol. 16, p. 488. https://doi.org/10.1016/j.nanoen.2015.07.014
Kim, H.W., Yoon, H.W., Yoon, S.M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y., and Park, H.B., Science, 2013, vol. 342, p. 91. https://doi.org/10.1126/science.1236098
Kim, D., Kim, D.W., Lim, H.K., Jeon, J., Kim, H., Jung, H.T., and Lee, H. J. Phys. Chem. (C), 2014, vol. 118, p. 11142. https://doi.org/10.1021/jp5026762
Eigler, S., Dotzer, C., Hirsch, A., Enzelberger, M., and Müller, P., Chem. Mater., 2012, vol. 24, p. 1276.
留言 (0)