Graphene Oxide: Unveiling Its Chemistry and Its Emerging Applications (A Review)

Rümmeli, M.H., Rocha, C.G., Ortmann, F., Ibrahim, I., Sevincli, H., Boerrnert, F., Kunstmann J, Bachmatiuk A, Pötschke M, Shiraishi M, Meyyappan, M., Büchner B, Roche S., and Cuniberti, G., Adv. Mater., 2011, vol. 23, p. 4471. https://doi.org/10.1002/adma.201101855

Yang, G., Li, L., Lee, W.B., and Ng, M.C., Sci. Technol. Adv. Mater., 2018, vol. 19, p. 613. https://doi.org/10.1080/14686996.2018.1494493

Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., and Shepard, K.L., Nat. Nanotechnol., 2008, vol. 3, p. 654. https://doi.org/10.1038/nnano.2008.268

Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., and Sheehan, P.E., Nano Lett., 2008, vol. 8, p. 3137. https://doi.org/10.1021/nl8013007

Mohanty, N. and Berry, V., Nano Lett., 2008 vol. 8, p. 4469. https://doi.org/10.1021/nl802412n

Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., ACS Nano., 2008, vol. 2, p. 463. https://doi.org/10.1021/nn700375n

Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., and Cui, Y., and Dai, H., Nano Lett., 2011, vol. 11, p. 2644. https://doi.org/10.1021/nl200658a

Shin, D.S., Kim, H.G., Ahn, H.S., Jeong, H.Y., Kim, Y.J., Odkhuu, D., Tsogbadrakhf, N., Lee, H.B.R., and Kim, B.H., RSC Adv., 2017, vol. 7, p. 13979. https://doi.org/10.1039/C7RA00114B

Kumar, V., Kumar, A., Lee, D.J., and Park, S.S., Materials, 2021, vol. 14, p. 4590. https://doi.org/10.3390/ma14164590

Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., and Bai, J., Appl. Phys. Lett., 2011, vol. 99, p. 1. https://doi.org/10.1063/1.3607305

He, H., Riedl, T., Lerf, A., and Klinowski, J., J. Phys. Chem., 1996, vol. 100, p. 19954. https://doi.org/10.1021/jp961563t

Ruoff, R., Nat. Nanotechnol., 2008, vol. 3, p. 10. https://doi.org/10.1038/nnano.2007.432

Sofer, Z., Šimek, P., Jankovský, O., Sedmidubský, D., Beran, P., and Pumera, M., Nanoscale., 2014, vol. 6, p. 13082. https://doi.org/10.1039/c4nr04644g

Wilson, N.R., Pandey, P.A., Beanland, R., Young, R.J., Kinloch, I.A., Gong, L., Liu, Z., Suenaga, K., Rourke, J.P., York S.J., and Sloan, J., ACS Nano., 2009, vol. 3, p. 2547. https://doi.org/10.1021/nn900694t

Nováček, M., Jankovský, O., Luxa, J., Sedmidubský, D., Pumera, M., Fila, V., Lhotka, M., Klímová, K., Matějková, S., and Sofer, Z., J. Mater. Chem. (A), 2017, vol. 5, p. 2739. https://doi.org/10.1039/C6TA03631G

Hofmann, U., and Holst, R., Ber. Dtsch. Chem. Ges., 1939, vol. 72, p. 754. https://doi.org/10.1002/cber.19390720417

Ruess, G., Monatsh. Chem., 1947, vol. 76, p. 38. https://doi.org/10.1007/BF00898987

Scholz, W., and Boehm, H.P., Zeit. anorg. allg. Chem., 1969, vol. 369, p. 327. https://doi.org/10.1002/zaac.19693690322

Lojka, M., Lochman, B., Jankovský, O., Jiříčková, A., Sofer, Z., and Sedmidubský, D., Materials, 2019, vol. 12, p. 2367. https://doi.org/10.3390/ma12152367

Dimiev, A.M., Alemany, L.B., and Tour, J.M., ACS Nano, 2013, vol. 7, p. 576. https://doi.org/10.1021/nn3047378

Lu, Y., Huang, L., Guo, Y., and Yang, X., Carbon, 2021, vol. 183, p. 355. https://doi.org/10.1016/j.carbon.2021.07.026

Article  Google Scholar 

Liu, Z., Nørgaard, K., Overgaard, M.H., Ceccato, M., Mackenzie, D.M., Stenger, N., Stipp, S.L.S., and Hassenkam, T., Carbon, 2018, vol. 127, p. 141. https://doi.org/10.1016/j.carbon.2017.10.100

Sun, L., Chin. J. Chem. Eng., 2019, vol. 27, p. 2251. https://doi.org/10.1016/j.cjche.2019.05.003

López-Dı́az, D., Merchán, M.D., Velázquez, M.M., and Maestro, A., ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 25453. https://doi.org/10.1021/acsami.0c05649

Sofer, Z., Jankovský, O., Šimek, P., Soferová, L., Sedmidubský, D., and Pumera, M., Nanoscale, 2014, vol. 6, p. 2153. https://doi.org/10.1039/c3nr05407a

Jiříčková, A., Jankovský, O., Sofer, Z., and Sedmidubský, D., Materials, 2022, vol. 15, p. 920. https://doi.org/10.3390/ma15030920

Bonanni, A., Ambrosi, A., Chua, C.K., and Pumera, M., ACS Nano, 2014, vol. 8, p. 4197. https://doi.org/10.1021/nn404255q

Kedir, A., Gamachu, M., and Alex, A.G., J. Nanomater., 2023, vol. 2023. https://doi.org/10.1155/2023/6741000

Thirupathi, R., Reddy, Y.J., Prabhakaran, E.N., and Atreya, H.S., J. Chem. Sci., 2014, vol. 126, p. 541.

Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., and Wilson, N.R., Angew Chem Int Ed Engl., 2011, vol. 50, p. 3173. https://doi.org/10.1002/anie.201007520

Brodie, B., Ann. Chim. Phys., 1855, vol. 45, p. 351.

Brodie, B.C., Phil. Trans. R. Soc., 1859, vol. 149, p. 249. https://doi.org/10.1098/rstl.1859.0013

Staudenmaier, L., Ber. Dtsch. Chem. Ges., 1898, vol. 31, p. 1481. https://doi.org/10.1002/cber.18980310237

Jankovský, O., Nováček, M., Luxa, J., Sedmidubský, D., Boháčová, M., Pumera, M., and Sofer, Z., Chem. Eur. J., 2017, vol. 23, p. 6432. https://doi.org/10.1002/chem.201700809

Hummers Jr, W.S., and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339. https://doi.org/10.1021/ja01539a017

Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S.A., Buzaneva, E.V., and Gorchinskiy, A.D., Chem. Mater., 1999, vol. 11, p. 771. https://doi.org/10.1021/cm981085u

Eigler, S., Chem. Commun., 2015, vol. 51, p. 3162. https://doi.org/10.1039/C4CC09381J

Yu, H., Zhang, B., Bulin, C., Li, R., and Xing, R., Sci. Rep., 2016, vol. 6, p. 1. https://doi.org/10.1038/srep36143

Grimm, S., Schweiger, M., Eigler, S., and Zaumseil, J., J. Phys. Chem. ©, 2016, vol. 120, p. 3036. https://doi.org/10.1021/acs.jpcc.5b11598

Chen, H., Du, W., Liu, J., Qu, L., and Li, C., Chem. Sci., 2019, vol. 10, p. 1244. https://doi.org/10.1039/C8SC03695K

Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M., ACS Nano, 2010, vol. 4, p. 480. https://doi.org/10.1021/nn1006368

Betancur, A.F., Ornelas-Soto, N., Garay-Tapia, A.M., Pérez, F.R., Salazar, Á., and García, A.G., Mater. Chem. Phys., 2018, vol. 218, p. 51. https://doi.org/10.1016/j.matchemphys.2018.07.019

Ishikawa, T., Kanemaru, T., Teranishi, H., and Onishi, K., Patent US 4094951, 1978.

Dreyer, D.R., Park, S., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228. https://doi.org/10.1039/B917103G

Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., Zhao, X., and Gao, C., Nat. Commun., 2015, vol. 6, p. 5716.

Sofer, Z., Luxa, J., Jankovský, O., Sedmidubský, D., Bystroň, T., and Pumera, M., Angew. Chem. Int. Ed., 2016, vol. 55, p. 11965. https://doi.org/10.1002/anie.201603496

Yu, C., Wang, C. F., and Chen, S., Sci. Rep., 2016, vol. 6, p. 17071. https://doi.org/10.1038/srep17071

Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., and Ye, M., Chem. Mater., 2009, vol. 21, p. 3514. https://doi.org/10.1021/cm901247t

Jankovský, O., Lojka, M., Jiříčková, A., Aneziris, C.G., Storti, E., and Sedmidubský, D., Materials, 2020, vol. 13, p. 2006. https://doi.org/10.3390/ma13082006

Ranjan, P., Agrawal, S., Sinha, A., Rao, T.R., Balakrishnan, J., and Thakur, A.D., Sci. Rep., 2018, vol. 8, p. 12007. https://doi.org/10.1038/s41598-018-32556-2

Alex, A.G., Kedir, A., and Tewele, T.G., Constr. Build. Mater., 2022, vol. 360, p. 129609. https://doi.org/10.1016/j.conbuildmat.2022.129609

Yu, P., Tian, Z., Lowe, S. E., Song, J., Ma, Z., Wang, X., Han, Z.J., Bao, Q., Simon, G.P., Li, D., and Zhong, Y.L., Chem. Mater., 2016, vol. 28, p. 8429. https://doi.org/10.1021/acs.chemmater.6b04415

Pei, S., Wei, Q., Huang, K., Cheng, H. M., and Ren, W., Nat. Commun., 2018, vol. 9, p. 145. https://doi.org/10.1038/s41467-017-02479-z

Zhu, C., Liu, L., Fan, M., Liu, L., Dai, B., Yang, J., and Sun, D., RSC Adv., 2014, vol. 4, p. 55044. https://doi.org/10.1039/C4RA09827G

Jankovský, O., Nováček, M., Luxa, J., Sedmidubský, D., Fila, V., Pumera, M., and Sofer, Z., Chem. Eur. J., 2016, vol. 22, p. 17416. https://doi.org/10.1002/chem.201603766

Article  PubMed  Google Scholar 

Bakandritsos, A., Pykal, M., Błoński, P., Jakubec, P., Chronopoulos, D. D., Poláková, K., Georgakilas, V., Čépe, K., Tomanec, O., Ranc, V., Bourlinos, A.B., Zbořil, R., and Otyepka, M., ACS Nano, 2017, vol. 11, p. 2982. https://doi.org/10.1021/acsnano.6b08449

Mao, S., Yu, K., Lu, G., and Chen, J., Nano Res., 2011, vol. 4, p. 921. https://doi.org/10.1007/s12274-011-0148-3

Trung, T.Q., Tien, N.T., Kim, D., Jang, M., Yoon, O.J., and Lee, N.E., Adv. Funct. Mater., 2014, vol. 24, p. 117. https://doi.org/10.1002/adfm.201301845

Aspermair, P., Mishyn, V., Bintinger, J., Happy, H., Bagga, K., Subramanian, P., Knoll, W., Boukherroub, R., and Szunerits, S., Anal. Bioanal. Chem., 2021, vol. 6, p. 1. https://doi.org/10.1007/s00216-020-02879-z

Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., and Zhang, G.J., ACS Nano, 2014, vol. 8, p. 2632. https://doi.org/10.1021/nn4063424

Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L., and Robinson, N.D., ACS Nano, 2010, vol. 4, p. 637. https://doi.org/10.1021/nn9018569

Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., and Ruoff, R.S., Carbon, 2010, vol. 48, p. 2118. https://doi.org/10.1016/j.carbon.2010.02.001

Hansora, D.P., Shimpi, N.G., and Mishra, S., JOM, 2015, vol. 67, p. 2855. https://doi.org/10.1007/s11837-015-1522-5

Zhou, G., Wang, D. W., Li, F., Zhang, L., Li, N., Wu, Z.S., Wen, L., Lu, G.Q., and Cheng, H.M., Chem. Mater., 2010, vol. 22, p. 5306. https://doi.org/10.1021/cm101532x

Aneja, K.S., Böhm, H.M., Khanna, A.S., and Böhm, S., FlatChem, vol. 1, p. 11. https://doi.org/10.1016/j.flatc.2016.08.003

Ghauri, F.A., Raza, M.A., Baig, M.S., and Ibrahim, S., Mater. Res. Express., 2017, vol. 4, p. 125601. https://doi.org/10.1088/2053-1591/aa9aac

Singh, S., Hasan, M. R., Sharma, P., and Narang, J., Sens. Int., 2022.vol. 3, p.100190. https://doi.org/10.1016/j.sintl.2022.100190

Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., J. Phys. Chem. (B)., 2006, vol. 110, p. 8535. https://doi.org/10.1021/jp060936f

Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., and Cheng, H.M., Carbon, 2009, vol. 47, p. 493. https://doi.org/10.1016/j.carbon.2008.10.031

Jankovský, O., Šimek, P., Luxa, J., Sedmidubský, D., Tomandl, I., Macková, A., Mikšová, R., Malinský, P., Pumera, M., and Sofer, Z., ChemPlusChem, 2015, vol. 80, p. 1399. https://doi.org/10.1002/cplu.201500168

McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I.A.,Chem. Mater., 2007, vol. 19, p. 4396. https://doi.org/10.1021/cm0630800

Sofer, Z., Jankovsky, O., Simek, P., Sedmidubsky, D., Sturala, J., Kosina, J., Mikšová, R., Macková, A., Mikulics, M., and Pumera, M., ACS Nano, 2015, vol. 9, p. 5478. https://doi.org/10.1021/acsnano.5b01463

Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., and Car, R., Nano Lett., 2008, vol. 8, p. 36. https://doi.org/10.1021/nl071822y

Jankovský, O., Kučková, Š.H., Pumera, M., Šimek, P., Sedmidubský, D., and Sofer, Z., New J. Chem., 2014, vol. 38, p. 5700. https://doi.org/10.1039/C4NJ00871E

Jankovský, O., Lojka, M., Nováček, M., Luxa, J., Sedmidubský, D., Pumera, M., Kosina, J., and Sofer, Z., Green Chem., 2016, vol. 18, p. 6618. https://doi.org/10.1039/C6GC02491B

Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., and Chhowalla, M., Adv. Funct. Mater., 2009, vol. 19, p. 2577. https://doi.org/10.1002/adfm.200900166

Wang, X., Zhi, L., and Müllen, K., Nano Lett., 2008, vol. 8, p. 323. https://doi.org/10.1021/nl072838r

Wu, Z.S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., and Cheng, H.M., ACS Nano, 2009, vol. 3, p. 411. https://doi.org/10.1021/nn900020u

Jin, Y., Zheng, Y., Podkolzin, S.G., and Lee, W., J. Mater. Chem. (C), 2020, vol. 8, p. 4885. https://doi.org/10.1039/C9TC07063J

Kotov, N.A., Dékány, I., and Fendler, J.H., Adv. Mater., vol. 8, p. 637. https://doi.org/10.1002/adma.19960080806

Zhang, X., Li, K., Li, H., Lu, J., Fu, Q., and Chu, Y., Synth. Met., 2014, vol. 193, p. 132. https://doi.org/10.1016/j.synthmet.2014.04.007

Cai, D. and Song, M., J. Mater. Chem., 2007, vol. 17, p. 3678. https://doi.org/10.1039/B705906J

Novoselov, K.S., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K.A.J.N., Nature, 2012, vol. 490, p. 192. https://doi.org/10.1038/nature11458

Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., MartínezAlonso, A., and Tascón, J.M.D., J. Phys. Chem. (C), 2010, vol. 114, no 14, p. 6426. https://doi.org/10.1021/jp100603h

Šimek, P., Sofer, Z., Jankovský, O., Sedmidubský, D., and Pumera, M., Adv. Funct. Mater., 2014, vol. 24, p. 4878. https://doi.org/10.1002/adfm.201304284

Jankovský, O., Šimek, P., Sedmidubský, D., Matějková, S., Janoušek, Z., Šembera, F., Pumera, M., and Sofer, Z., RSC Adv., 2014, vol. 4, p. 1378. https://doi.org/10.1039/C3RA45183F

Mazánek, V., Jankovský, O., Luxa, J., Sedmidubský, D., Janoušek, Z., Šembera, F., Mikulics, M., and Sofer, Z., Nanoscale, 2015, vol. 7, p. 13646. https://doi.org/10.1039/C5NR03243A

Chronopoulos, D.D., Bakandritsos, A., Pykal, M., Zbořil, R., and Otyepka, M., Appl. Mater. Today, 2017, vol. 9, p. 60. https://doi.org/10.1016/j.apmt.2017.05.004

Lazar, P., Otyepková, E., Karlický, F., Čépe, K., and Otyepka, M., Carbon, 2015, vol. 94, p. 804. https://doi.org/10.1016/j.carbon.2015.07.064

Zbořil, R., Karlický, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Šafářová, K., Jančík, D., Trapalis, C., and Otyepka, M., Small, 2010, vol. 6, p. 2885. https://doi.org/10.1002/smll.201001401

Cheng, S.H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Sofo, J.O., and Zhu, J., Phys. Rev. (B), 2010, vol. 81, p. 205435. https://doi.org/10.1103/PhysRevB.81.205435

Zhang, M., Ma, Y., Zhu, Y., Che, J., and Xiao, Y., Carbon, 2013 vol. 63, p. 149. https://doi.org/10.1016/j.carbon.2013.06.066

Sun, C., Feng, Y., Li, Y., Qin, C., Zhang, Q., and Feng, W., Nanoscale, 2014, vol. 6, p. 2634. https://doi.org/10.1039/C3NR04609E

Zhu, M., Xie, X., Guo, Y., Chen, P., Ou, X., Yu, G., and Liu, M., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20992. https://doi.org/10.1039/c3cp53383b

Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F. K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., and Snow, E.S., Nano Lett., 2010, vol. 10, p. 3001. https://doi.org/10.1021/nl101437p

Bouša, D., Mazánek, V., Sedmidubský, D., Jankovský, O., Pumera, M., and Sofer, Z., Chemistry, 2018, vol. 24, p. 8350. https://doi.org/10.1002/chem.201800236

Article  PubMed  Google Scholar 

Jankovský, O., Lojka, M., Lauermannová, A.M., Antončík, F., Pavlíková, M., Záleská, M., Pavlík, Z., Pivák, A., and Sedmidubský, D., Appl. Mater. Today, 2020, vol. 20, p. 100766. https://doi.org/10.1016/j.apmt.2020.100766

Aliyev, E.M., Khan, M.M., Nabiyev, A.M., Alosmanov, R.M., Bunyad-Zadeh, I. A., Shishatskiy, S., and Filiz, V., Nanoscale Res. Lett., 2018, vol. 13, p. 1. https://doi.org/10.1186/s11671-018-2771-3

Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., Wang, D., Xie, G., Shi, D., and Zhang, G., Carbon, 2012, vol. 50, p. 2581. https://doi.org/10.1016/j.carbon.2012.02.016

Li, J., Vaisman, L., Marom, G., and Kim, J.K., Carbon, 2007, vol. 45, p. 744. https://doi.org/10.1016/j.carbon.2006.11.031

Krishnamoorthy, K., Mohan, R., and Kim, S.J., Appl. Phys. Lett., 2011, vol. 98, no. 24, p. 244101. https://doi.org/10.1063/1.3599453

Krishnamoorthy, K., Veerapandian, M., Yun, K., and Kim, S.J., Carbon, vol. 53, p. 38. https://doi.org/10.1016/j.carbon.2012.10.013

Venugopal, G., Krishnamoorthy, K., Mohan, R., and Kim, S.J., Mater. Chem. Phys., 2012, vol. 132, p. 29. https://doi.org/10.1016/j.matchemphys.2011.10.040

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., J. Electron Spectrosc. Relat. Phenomena, 2014, vol. 195, p. 145. https://doi.org/10.1016/j.elspec.2014.07.003

Gupta, V., Sharma, N., Singh, U., Arif, M., and Singh, A., Optik, 2017, vol. 143, p. 115. https://doi.org/10.1016/j.ijleo.2017.05.100

Guerrero-Contreras, J. and Caballero-Briones, F., Mater. Chem. Phys., 2015, vol. 153, p. 209. https://doi.org/10.1016/j.matchemphys.2015.01.005

Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., and Atieh, M.A., Ceram. Int., 2019, vol. 45, p. 14439. https://doi.org/10.1016/j.ceramint.2019.04.165

Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C., and Yang, Q.H., Carbon, 2013, vol. 62, p. 11. https://doi.org/10.1016/j.carbon.2013.05.033

Zhao, J., Pei, S., Ren, W., Gao, L., and Cheng, H.M., ACS Nano, 2010, vol. 4, p. 5245. https://doi.org/10.1021/nn1015506

Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S., Nature, 2007, vol. 448, p. 457. https://doi.org/10.1038/nature06016

Lv, S., Zhang, J., Zhu, L., and Jia, C., Materials, 2016, vol. 9, p. 924. https://doi.org/10.3390/ma9110924

Li, F., Jiang, X., Zhao, J., and Zhang, S., Nano Energy, 2015, vol. 16, p. 488. https://doi.org/10.1016/j.nanoen.2015.07.014

Kim, H.W., Yoon, H.W., Yoon, S.M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y., and Park, H.B., Science, 2013, vol. 342, p. 91. https://doi.org/10.1126/science.1236098

Kim, D., Kim, D.W., Lim, H.K., Jeon, J., Kim, H., Jung, H.T., and Lee, H. J. Phys. Chem. (C), 2014, vol. 118, p. 11142. https://doi.org/10.1021/jp5026762

Eigler, S., Dotzer, C., Hirsch, A., Enzelberger, M., and Müller, P., Chem. Mater., 2012, vol. 24, p. 1276.

留言 (0)

沒有登入
gif