In silico identification and characterisation of pathogenic genetic variants (nsSNPs) in the eukaryotic initiation factors eIF2 and eIF2B affecting miRNA binding sites

Williams DD, Pavitt GD, Proud CG (2001) Characterization of the initiation factor eIF2B and its regulation in drosophila melanogaster. J Biol Chem 276:3733–3742

Article  CAS  PubMed  Google Scholar 

Bogorad AM, Lin KY, Marintchev A (2017) Novel mechanisms of eIF2B action and regulation by eIF2 phosphorylation. Nucleic Acids Res 45:11962–11979

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marintchev A, Ito T (2020) EIF2B and the integrated stress response: a structural and mechanistic view. Biochemistry 59:1299–1308

Article  CAS  PubMed  Google Scholar 

Norris K, Hodgson RE, Dornelles T, Elizabeth Allen K, Abell BM, Ashe MP et al (2021) Mutational analysis of the alpha subunit of eIF2B provides insights into the role of eIF2B bodies in translational control and VWM disease. J Biol Chem 296:100207

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao Q, Heo JM, Nocek BP, Hicks KG, Stoll VS, Remarcik C et al (2021) Sugar phosphate activation of the stress sensor eIF2B. Nat Commun. https://doi.org/10.1038/s41467-021-23836-z

Article  PubMed  PubMed Central  Google Scholar 

Kershaw CJ, Jennings MD, Cortopassi F, Guaita M, Al-Ghafli H, Pavitt GD (2021) GTP binding to translation factor eIF2B stimulates its guanine nucleotide exchange activity. iScience 24:103454

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams DD, Price NT, Loughlin AJ, Proud CG (2001) Characterization of the mammalian initiation factor eIF2B complex as a GDP dissociation stimulator protein. J Biol Chem 276:24697–24703

Article  CAS  PubMed  Google Scholar 

Lawrence RE, Shoemaker S, Deal A, Sangwan S, Anand A, Wang L, et al (2022) A central helical fulcrum in eIF2B coordinates allosteric regulation of integrated stress response signaling. https://doi.org/10.1101/2022.12.22.521453

Gross M, Rubino MS, Starn TK (1988) Regulation of protein synthesis in rabbit reticulocyte lysate. Glucose 6-phosphate is required to maintain the activity of eukaryotic initiation factor (eIF)-2B by a mechanism that is independent of the phosphorylation of eIF-2 alpha. J Biol Chem 263(25):12486–12492

Article  CAS  PubMed  Google Scholar 

Gross M, Rubino MS (1989) Regulation of eukaryotic initiation factor-2B activity by polyamines and amino acid starvation in rabbit reticulocyte lysate. J Biol Chem 264(36):21879–21884

Article  CAS  PubMed  Google Scholar 

Dholakia JN, Wahba AJ (1988) Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation (eukaryotic initiation factor 2/protein synthesis regulation/dephosphorylation). https://www.pnas.org

Jennings MD, Kershaw CJ, Adomavicius T, Pavitt GD (2017) Fail-safe control of translation initiation by dissociation of eIF2α phosphorylated ternary complexes. Elife. https://doi.org/10.7554/eLife.24542

Article  PubMed  PubMed Central  Google Scholar 

Schoof M, Boone M, Wang L, Lawrence R, Frost A, Walter P (2021) Eif2b conformation and assembly state regulate the integrated stress response. Elife. https://doi.org/10.7554/eLife.65703

Article  PubMed  PubMed Central  Google Scholar 

Humeau J, Leduc M, Cerrato G, Loos F, Kepp O, Kroemer G (2020) Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis. https://doi.org/10.1038/s41419-020-2642-6

Article  PubMed  PubMed Central  Google Scholar 

Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Du R, Reis Monteiro dos Santos GR, Yefidoff-Freedman R, Bohm A, Halperin J et al (2020) New activators of eIF2α kinase heme-regulated Inhibitor (HRI) with improved biophysical properties. Eur J Med Chem 187:111973

Article  CAS  PubMed  Google Scholar 

Kobayashi H, Børsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR et al (2003) Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am J Physiol-Endocrinol Metab 284(3):E488–E498

Article  CAS  PubMed  Google Scholar 

Wuerth JD, Habjan M, Kainulainen M, Berisha B, Bertheloot D, Superti-Furga G et al (2020) Eif2b as a target for viral evasion of pkr-mediated translation inhibition. MBio 11:1–14

Article  Google Scholar 

Wang MG, Fan RF, Li WH, Zhang D, Yang DB, Wang ZY et al (2019) Activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress contributes to lead-induced nephrotoxicity. Biochim Biophys Acta Mol Cell Res 1866:713–726

Article  CAS  PubMed  Google Scholar 

Fabian JR, Kimball SR, Heinzinger NK, Jefferson LS (1997) Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J Biol Chem 272:12359–12365

Article  CAS  PubMed  Google Scholar 

Nüske E, Marini G, Richter D, Leng W, Bogdanova A, Franzmann TM et al (2020) Filament formation by the translation factor eIF2B regulates protein synthesis in starved cells. Biol Open. https://doi.org/10.1242/bio.046391

Article  PubMed  PubMed Central  Google Scholar 

Pavitt GD, Ramaiah KVA, Kimball SR, Hinnebusch AG (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 12(4):514–526

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanson FM, Hodgson RE, Ribeiro de Oliveira MI, Allen KE, Campbell SG (2022) Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep. https://doi.org/10.1042/BSR20211699

Fogli A, Schiffmann R, Hugendubler L, Combes P, Bertini E, Rodriguez D et al (2004) Decreased guanine nucleotide exchange factor activity in elF2B-mutated patients. Eur J Hum Genet 12:561–566

Article  CAS  PubMed  Google Scholar 

Alves C, Correia P, Ferreira Chagas P, Baroni M, Alencastro G, Cruzeiro V, et al. (2021) Integrated microRNA Analysis Identies miR-512-3p as a Potential Biomarker of Poor Outcome in Pediatric Medulloblastoma. https://doi.org/10.21203/rs.3.rs-1068266/v1

Duan Q, Sun W, Yuan H, Mu X (2018) MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 14:735–744

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Battum EY, Verhagen MG, Vangoor Fujita VRY, Derijck AAHA, O’Duibhir E, Giuliani G et al (2018) An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4. J Neurosci 38:613–630

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Boone M, Lawrence RE, Frost A, Walter P, Schoof M (2021) A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. Elife. https://doi.org/10.1101/2021.12.03.471181

Article  PubMed  PubMed Central  Google Scholar 

Liang Wong Y, Lebon L, Basso AM, Kohlhaas KL, Nikkel AL, Robb HM et al (2019) eIF2B activator prevents neurological defects caused by a chronic integrated stress response. Elife. https://doi.org/10.7554/eLife.42940.001

Article  Google Scholar 

Hamilton EMC, Van Der Lei HDW, Vermeulen G, Gerver JAM, Lourenço CM, Naidu S et al (2018) Natural history of vanishing white matter. Ann Neurol 84(2):274–288. https://doi.org/10.1002/ana.25287

Article  PubMed  PubMed Central  Google Scholar 

Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) MiRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

Article  CAS  PubMed  Google Scholar 

Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J et al (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10:e1003440

Article  PubMed  PubMed Central  Goo

留言 (0)

沒有登入
gif