Williams DD, Pavitt GD, Proud CG (2001) Characterization of the initiation factor eIF2B and its regulation in drosophila melanogaster. J Biol Chem 276:3733–3742
Article CAS PubMed Google Scholar
Bogorad AM, Lin KY, Marintchev A (2017) Novel mechanisms of eIF2B action and regulation by eIF2 phosphorylation. Nucleic Acids Res 45:11962–11979
Article CAS PubMed PubMed Central Google Scholar
Marintchev A, Ito T (2020) EIF2B and the integrated stress response: a structural and mechanistic view. Biochemistry 59:1299–1308
Article CAS PubMed Google Scholar
Norris K, Hodgson RE, Dornelles T, Elizabeth Allen K, Abell BM, Ashe MP et al (2021) Mutational analysis of the alpha subunit of eIF2B provides insights into the role of eIF2B bodies in translational control and VWM disease. J Biol Chem 296:100207
Article CAS PubMed PubMed Central Google Scholar
Hao Q, Heo JM, Nocek BP, Hicks KG, Stoll VS, Remarcik C et al (2021) Sugar phosphate activation of the stress sensor eIF2B. Nat Commun. https://doi.org/10.1038/s41467-021-23836-z
Article PubMed PubMed Central Google Scholar
Kershaw CJ, Jennings MD, Cortopassi F, Guaita M, Al-Ghafli H, Pavitt GD (2021) GTP binding to translation factor eIF2B stimulates its guanine nucleotide exchange activity. iScience 24:103454
Article CAS PubMed PubMed Central Google Scholar
Williams DD, Price NT, Loughlin AJ, Proud CG (2001) Characterization of the mammalian initiation factor eIF2B complex as a GDP dissociation stimulator protein. J Biol Chem 276:24697–24703
Article CAS PubMed Google Scholar
Lawrence RE, Shoemaker S, Deal A, Sangwan S, Anand A, Wang L, et al (2022) A central helical fulcrum in eIF2B coordinates allosteric regulation of integrated stress response signaling. https://doi.org/10.1101/2022.12.22.521453
Gross M, Rubino MS, Starn TK (1988) Regulation of protein synthesis in rabbit reticulocyte lysate. Glucose 6-phosphate is required to maintain the activity of eukaryotic initiation factor (eIF)-2B by a mechanism that is independent of the phosphorylation of eIF-2 alpha. J Biol Chem 263(25):12486–12492
Article CAS PubMed Google Scholar
Gross M, Rubino MS (1989) Regulation of eukaryotic initiation factor-2B activity by polyamines and amino acid starvation in rabbit reticulocyte lysate. J Biol Chem 264(36):21879–21884
Article CAS PubMed Google Scholar
Dholakia JN, Wahba AJ (1988) Phosphorylation of the guanine nucleotide exchange factor from rabbit reticulocytes regulates its activity in polypeptide chain initiation (eukaryotic initiation factor 2/protein synthesis regulation/dephosphorylation). https://www.pnas.org
Jennings MD, Kershaw CJ, Adomavicius T, Pavitt GD (2017) Fail-safe control of translation initiation by dissociation of eIF2α phosphorylated ternary complexes. Elife. https://doi.org/10.7554/eLife.24542
Article PubMed PubMed Central Google Scholar
Schoof M, Boone M, Wang L, Lawrence R, Frost A, Walter P (2021) Eif2b conformation and assembly state regulate the integrated stress response. Elife. https://doi.org/10.7554/eLife.65703
Article PubMed PubMed Central Google Scholar
Humeau J, Leduc M, Cerrato G, Loos F, Kepp O, Kroemer G (2020) Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy. Cell Death Dis. https://doi.org/10.1038/s41419-020-2642-6
Article PubMed PubMed Central Google Scholar
Donnelly N, Gorman AM, Gupta S, Samali A (2013) The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511
Article CAS PubMed PubMed Central Google Scholar
Zhang Q, Du R, Reis Monteiro dos Santos GR, Yefidoff-Freedman R, Bohm A, Halperin J et al (2020) New activators of eIF2α kinase heme-regulated Inhibitor (HRI) with improved biophysical properties. Eur J Med Chem 187:111973
Article CAS PubMed Google Scholar
Kobayashi H, Børsheim E, Anthony TG, Traber DL, Badalamenti J, Kimball SR et al (2003) Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am J Physiol-Endocrinol Metab 284(3):E488–E498
Article CAS PubMed Google Scholar
Wuerth JD, Habjan M, Kainulainen M, Berisha B, Bertheloot D, Superti-Furga G et al (2020) Eif2b as a target for viral evasion of pkr-mediated translation inhibition. MBio 11:1–14
Wang MG, Fan RF, Li WH, Zhang D, Yang DB, Wang ZY et al (2019) Activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress contributes to lead-induced nephrotoxicity. Biochim Biophys Acta Mol Cell Res 1866:713–726
Article CAS PubMed Google Scholar
Fabian JR, Kimball SR, Heinzinger NK, Jefferson LS (1997) Subunit assembly and guanine nucleotide exchange activity of eukaryotic initiation factor-2B expressed in Sf9 cells. J Biol Chem 272:12359–12365
Article CAS PubMed Google Scholar
Nüske E, Marini G, Richter D, Leng W, Bogdanova A, Franzmann TM et al (2020) Filament formation by the translation factor eIF2B regulates protein synthesis in starved cells. Biol Open. https://doi.org/10.1242/bio.046391
Article PubMed PubMed Central Google Scholar
Pavitt GD, Ramaiah KVA, Kimball SR, Hinnebusch AG (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev 12(4):514–526
Article CAS PubMed PubMed Central Google Scholar
Hanson FM, Hodgson RE, Ribeiro de Oliveira MI, Allen KE, Campbell SG (2022) Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep. https://doi.org/10.1042/BSR20211699
Fogli A, Schiffmann R, Hugendubler L, Combes P, Bertini E, Rodriguez D et al (2004) Decreased guanine nucleotide exchange factor activity in elF2B-mutated patients. Eur J Hum Genet 12:561–566
Article CAS PubMed Google Scholar
Alves C, Correia P, Ferreira Chagas P, Baroni M, Alencastro G, Cruzeiro V, et al. (2021) Integrated microRNA Analysis Identies miR-512-3p as a Potential Biomarker of Poor Outcome in Pediatric Medulloblastoma. https://doi.org/10.21203/rs.3.rs-1068266/v1
Duan Q, Sun W, Yuan H, Mu X (2018) MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 14:735–744
Article CAS PubMed PubMed Central Google Scholar
Van Battum EY, Verhagen MG, Vangoor Fujita VRY, Derijck AAHA, O’Duibhir E, Giuliani G et al (2018) An image-based miRNA screen identifies miRNA-135s as regulators of CNS axon growth and regeneration by targeting krüppel-like factor 4. J Neurosci 38:613–630
Article PubMed PubMed Central Google Scholar
Wang L, Boone M, Lawrence RE, Frost A, Walter P, Schoof M (2021) A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. Elife. https://doi.org/10.1101/2021.12.03.471181
Article PubMed PubMed Central Google Scholar
Liang Wong Y, Lebon L, Basso AM, Kohlhaas KL, Nikkel AL, Robb HM et al (2019) eIF2B activator prevents neurological defects caused by a chronic integrated stress response. Elife. https://doi.org/10.7554/eLife.42940.001
Hamilton EMC, Van Der Lei HDW, Vermeulen G, Gerver JAM, Lourenço CM, Naidu S et al (2018) Natural history of vanishing white matter. Ann Neurol 84(2):274–288. https://doi.org/10.1002/ana.25287
Article PubMed PubMed Central Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) MiRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162
Article CAS PubMed Google Scholar
Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J et al (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10:e1003440
留言 (0)