Selenocysteine tRNA methylation promotes oxidative stress resistance in melanoma metastasis

Chan, C., Pham, P., Dedon, P. C. & Begley, T. J. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol. 19, 228 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).

Article  CAS  PubMed  Google Scholar 

Agris, P. F., Narendran, A., Sarachan, K., Vare, V. Y. P. & Eruysal, E. The importance of being modified: the role of RNA modifications in translational fidelity. Enzymes 41, 1–50 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endres, L., Dedon, P. C. & Begley, T. J. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 12, 603–614 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Hatfield, D. L., Tsuji, P. A., Carlson, B. A. & Gladyshev, V. N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fradejas-Villar, N. et al. The RNA-binding protein SECISBP2 differentially modulates UGA codon reassignment and RNA decay. Nucleic Acids Res. 45, 4094–4107 (2017).

Article  CAS  PubMed  Google Scholar 

Small-Howard, A. et al. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 26, 2337–2346 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, X. M. et al. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J. Biol. Chem. 280, 41568–41575 (2005).

Article  CAS  PubMed  Google Scholar 

Hatfield, D. L., Carlson, B. A., Xu, X. M., Mix, H. & Gladyshev, V. N. Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog. Nucleic Acid Res. Mol. Biol. 81, 97–142 (2006).

Article  CAS  PubMed  Google Scholar 

Kim, L. K. et al. Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure. RNA 6, 1306–1315 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Born, E. et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat. Commun. 2, 172 (2011).

Article  PubMed  Google Scholar 

Songe-Moller, L. et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell. Biol. 30, 1814–1827 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Diamond, A. M. et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J. Biol. Chem. 268, 14215–14223 (1993).

Article  CAS  PubMed  Google Scholar 

Howard, M. T., Carlson, B. A., Anderson, C. B. & Hatfield, D. L. Translational redefinition of UGA codons is regulated by selenium availability. J. Biol. Chem. 288, 19401–19413 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlson, B. A. et al. Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J. Biol. Chem. 282, 32591–32602 (2007).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).

Article  CAS  PubMed  Google Scholar 

Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

Article  CAS  PubMed  Google Scholar 

Jakupoglu, C. et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 25, 1980–1988 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 24, 9414–9423 (2004).

Article  CAS  PubMed Central  Google Scholar 

Tarrago, L. et al. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic. Biol. Med. 191, 228–240 (2022).

Article  CAS  Google Scholar 

Cox, A. G. et al. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc. Natl Acad. Sci. USA 113, E5562–E5571 (2016).

Article  CAS  PubMed Central  Google Scholar 

Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase. Cell 175, 809–821 (2018).

Article  CAS  PubMed Central  Google Scholar 

Addinsall, A. B., Wright, C. R., Andrikopoulos, S., van der Poel, C. & Stupka, N. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem. J. 475, 1037–1057 (2018).

Article  CAS  Google Scholar 

Kohrle, J. Thyroid hormone deiodinases—a selenoenzyme family acting as gate keepers to thyroid hormone action. Acta Med. Austriaca 23, 17–30 (1996).

CAS  Google Scholar 

Shetty, S. P. & Copeland, P. R. The selenium transport protein, selenoprotein P, requires coding sequence determinants to promote efficient selenocysteine incorporation. J. Mol. Biol. 430, 5217–5232 (2018).

Article  CAS  PubMed Central  Google Scholar 

Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

Article  CAS  PubMed  Google Scholar 

Brigelius-Flohe, R. & Flohe, L. Selenium and redox signaling. Arch. Biochem. Biophys. 617, 48–59 (2017).

Article  CAS  PubMed  Google Scholar 

Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endres, L. et al. ALKBH8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS ONE 10, e0131335 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Touat-Hamici, Z., Legrain, Y., Bulteau, A. L. & Chavatte, L. Selective up-regulation of human selenoproteins in response to oxidative stress. J. Biol. Chem. 289, 14750–14761 (2014).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif