Chan, C., Pham, P., Dedon, P. C. & Begley, T. J. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol. 19, 228 (2018).
Article CAS PubMed PubMed Central Google Scholar
Suzuki, T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22, 375–392 (2021).
Article CAS PubMed Google Scholar
Agris, P. F., Narendran, A., Sarachan, K., Vare, V. Y. P. & Eruysal, E. The importance of being modified: the role of RNA modifications in translational fidelity. Enzymes 41, 1–50 (2017).
Article CAS PubMed PubMed Central Google Scholar
Endres, L., Dedon, P. C. & Begley, T. J. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 12, 603–614 (2015).
Article PubMed PubMed Central Google Scholar
Hatfield, D. L., Tsuji, P. A., Carlson, B. A. & Gladyshev, V. N. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120 (2014).
Article CAS PubMed PubMed Central Google Scholar
Fradejas-Villar, N. et al. The RNA-binding protein SECISBP2 differentially modulates UGA codon reassignment and RNA decay. Nucleic Acids Res. 45, 4094–4107 (2017).
Article CAS PubMed Google Scholar
Small-Howard, A. et al. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 26, 2337–2346 (2006).
Article CAS PubMed PubMed Central Google Scholar
Xu, X. M. et al. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery. J. Biol. Chem. 280, 41568–41575 (2005).
Article CAS PubMed Google Scholar
Hatfield, D. L., Carlson, B. A., Xu, X. M., Mix, H. & Gladyshev, V. N. Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog. Nucleic Acid Res. Mol. Biol. 81, 97–142 (2006).
Article CAS PubMed Google Scholar
Kim, L. K. et al. Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure. RNA 6, 1306–1315 (2000).
Article CAS PubMed PubMed Central Google Scholar
van den Born, E. et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat. Commun. 2, 172 (2011).
Songe-Moller, L. et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell. Biol. 30, 1814–1827 (2010).
Article PubMed PubMed Central Google Scholar
Diamond, A. M. et al. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J. Biol. Chem. 268, 14215–14223 (1993).
Article CAS PubMed Google Scholar
Howard, M. T., Carlson, B. A., Anderson, C. B. & Hatfield, D. L. Translational redefinition of UGA codons is regulated by selenium availability. J. Biol. Chem. 288, 19401–19413 (2013).
Article CAS PubMed PubMed Central Google Scholar
Carlson, B. A. et al. Selective restoration of the selenoprotein population in a mouse hepatocyte selenoproteinless background with different mutant selenocysteine tRNAs lacking Um34. J. Biol. Chem. 282, 32591–32602 (2007).
Article CAS PubMed Google Scholar
Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003).
Article CAS PubMed Google Scholar
Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).
Article CAS PubMed Google Scholar
Jakupoglu, C. et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 25, 1980–1988 (2005).
Article CAS PubMed PubMed Central Google Scholar
Conrad, M. et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 24, 9414–9423 (2004).
Article CAS PubMed Central Google Scholar
Tarrago, L. et al. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic. Biol. Med. 191, 228–240 (2022).
Cox, A. G. et al. Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc. Natl Acad. Sci. USA 113, E5562–E5571 (2016).
Article CAS PubMed Central Google Scholar
Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase. Cell 175, 809–821 (2018).
Article CAS PubMed Central Google Scholar
Addinsall, A. B., Wright, C. R., Andrikopoulos, S., van der Poel, C. & Stupka, N. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem. J. 475, 1037–1057 (2018).
Kohrle, J. Thyroid hormone deiodinases—a selenoenzyme family acting as gate keepers to thyroid hormone action. Acta Med. Austriaca 23, 17–30 (1996).
Shetty, S. P. & Copeland, P. R. The selenium transport protein, selenoprotein P, requires coding sequence determinants to promote efficient selenocysteine incorporation. J. Mol. Biol. 430, 5217–5232 (2018).
Article CAS PubMed Central Google Scholar
Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).
Article CAS PubMed Google Scholar
Brigelius-Flohe, R. & Flohe, L. Selenium and redox signaling. Arch. Biochem. Biophys. 617, 48–59 (2017).
Article CAS PubMed Google Scholar
Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).
Article CAS PubMed PubMed Central Google Scholar
Endres, L. et al. ALKBH8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS ONE 10, e0131335 (2015).
Article PubMed PubMed Central Google Scholar
Touat-Hamici, Z., Legrain, Y., Bulteau, A. L. & Chavatte, L. Selective up-regulation of human selenoproteins in response to oxidative stress. J. Biol. Chem. 289, 14750–14761 (2014).
留言 (0)