Milisavljevic, I., Zhang, M., Jiang, Q., Liu, Q., Wu, Y. (2025). Transparent Electro-Optic Ceramics: processing, materials, and applications, Journal of Materiomics, 11(2), 100872. https://doi.org/10.1016/j.jmat.2024.04.002
Peng, L., Yang, J., Han, T., Lang, T., Cao, S., Liu, B., Qiang, Q., Chen, W. (2023). Tunable emission and high chromogenic laser lighting of transparent ceramics for high-brightness white LEDs/LDs, Journal of Luminescence, 263, 119987, https://doi.org/10.1016/j.jlumin.2023.119987
Mo, J., Zhang, L., Hu, C., Wang, Y., Chen, H., Li, X., Wu, J., Cheng, Z., Li, T., Li, D. J. (2024). Fabrication of submicron grained alumina transparent ceramics with high bending strength and low dielectric loss, Ceramics International, 50(16), 28301-28308. https://doi.org/10.1016/j.ceramint.2024.05.131
Jing, Y., Tian, F., Guo L., Li, T., Junlin Wu, J., Ivanov, M., Hreniak, D., Li, J. (2024). Effect of TEOS content on microstructure evolution and optical properties of Sm:YAG transparent ceramics, Optical Materials, 147, 114681. https://doi.org/10.1016/j.optmat.2023.114681
Hu, D., Zhang, L., Tian, F., Zhu, D., Chen, P., Yuan, Q., Balabanov, S., Li, J. (2023). Fine-grained transparent Dy2O3 ceramics fabricated from precipitated powders without sintering aids, Optical Materials, 142, 114071. https://doi.org/10.1016/j.optmat.2023.114071
Akinribide, O.J., Mekgwe, G. N., Akinwamide, S. O., Gamaoun F., Abeykoon, C., Johnson, O. T., Olubambi, P. A. (2022). A review on optical properties and application of transparent ceramics, J. Mater. Res. Technol., 21, 712–738. https://doi.org/10.1016/j.jmrt.2022.09.027
Wan, Z., Li, W., Bei, M., Liu, Z., Yang, Yu. (2020). Fabrication and spectral properties of Ho-doped calcium fluoride transparent ceramics, Journal of Luminescence, 223, 117188. https://doi.org/10.1016/j.jlumin.2020.117188
Ye, Y., Tang, Z., Ji, Z., Xiao, H., Liu, Y., Qin, Y., Liang, L., Qi, J., Lu, T. (2021). Fabrication and luminescent properties of holmium doped Y2Zr2O7 transparent ceramics as new type laser material, Optical Materials, 121, 111643. https://doi.org/10.1016/j.optmat.2021.111643
Ajmala, M., Alib, T., Adil Khana, M., Ahmada, S., Ahmad Mianb, S., Waheeda, A., Ali, S. (2017). Structural and optical properties of La2O3:Ho3+ and La(OH)3 : Ho3+ crystalline particles, Materials Today: Proceedings, 4 4900–4905. doi.org/10.1016/j.matpr.2017.04.093
Yang, Q., Zhou, H., Xu, J., Su, L. (2008). Synthesis and luminescence characterization of cerium doped Lu2O3-Y2O3-La2O3 solid solution transparent ceramics, Optics express., 16, 12295. doi:10.1364/oe.16.012290.
Le, T. H., Phan, A.-L., Ty, N.M., Zhou, D., Qiu, J., Dan. H.K. (2021). Influences of copper–potassium ion exchange process on the optical bandgaps and spectroscopic properties of Cr3+/Yb3+ co-doped in lanthanum aluminosilicate glasses, RSC Advances, 11(15), 8917–8926. https://doi.org/10.1039/d0ra10831f
Muller-Buschbaum, Hk., Graebner, P. H. (1971). [Zur Kristallstruktur von LaErO3 und LaLuO3], Z. Anorg. Allg. Chem., 386, 158–162 (in German).
Xiong, K., Robertson, J. (2009). Electronic structure of oxygen vacancies in La2O3, Lu2O3 and LaLuO3, Microelectr. En., 86(7–9), 1672–1675. https://doi.org/10.1016/j.mee.2009.03.016
Chudinovych, O. V., Zhdanyuk, N.V. (2020). [Interaction of lanthanum oxides and lutetium at a temperature of 1500–1600 °С], Ukrainian Chem. J., 86 (30), 19–25 (in Ukrainian). https://doi.org/10.33609/0041-6045.86.3.2020.19-25
Zinkevich, M. (2007). Thermodynamics of rare earth sesquioxides, Prog. Mater. Sci., 52(4), 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002.
Coutures, J.P., Foex, M. (1976). Etude a Haute TempCrature des Systsmes Formes par le Sesquioxyde de Lanthane et les Sesquioxydes de Lanthanides. I. Diagrammes de Phases (1400 ◦C https://doi.org/10.1016/0022-4596(76)90218-8.
Coutures, J., Sibieude, F., Foex, M. (1976). Etude a haute temp´erature des syst`emes form´espar les sesquioxydes de lanthane avec les sesquioxydes de lanthanides. II. Influence de la trempe sur la nature des phases obtenues `a la temp´erature ambiante, J. Solid State Chem., 17, 377–384, https://doi.org/10.1016/S0022-4596(76)80006-0.
Berndt, V., Maier, D., Keller, C. (1975). New ABO3 interlanthanide perovskite compounds, J. Solid State Chem., 13(1–2), 131–135. https://doi.org/10.1016/0022-4596(75)90090-0.
Korniienko, O.A., Yushkevich, S.V., Bykov, О. І., Sameliuk, A.V., Bataiev, Yu. M., Zamula, M.V. (2023). Phase relation studies in the CeO2-La2O3-Ho2O3 system at temperature of 1500 °С, Mater. Today Commun., 35, 105789. https://doi.org/10.1016/j.mtcomm.2023.105789
Zhang, Y. (2016). Thermodynamic Properties of Rare Earth Sesquioxides, McGill University, Montreal, QC, Canada.
Andrievskaya, E.R. (2010). [Phase Equilibria in the Systems of Hafnia, Yttria with Rare-Earth Oxides.] Scientific Book Project, Naukova Dumka, Kiev, 2010. (in Russian).
Zinkevich, M. Thermodynamic Database for Rare Earth Sesquioxide. https://materialsdata.nist.gov/handle/11256/965.
Chudinovych, O. V., Andrievskaya, О. R., Bogatyryova, J. D., Kovylyaev, V. V., Bykov, O. I. (2021). Phase equilibria in the La2O3–Y2O3–Nd2O3 system at 1500 °С, J. Eur. Ceram. Soc., 41, 6606–6616. https://doi.org/10.1016/j.jeurceramsoc.2021.06.017
Chudinovych, O. V., Bykov, О. І., Sameliuk, A.V. (2022). Phase equilibria in the La2O3–Y2O3–Gd2O3 system at 1500 °C, Process. Appl. Ceram., 16(4), 328–334. doi.org/10.2298/PAC2204328C
Chudinovych, O. V., Bykov, О. І., Sameliuk, A.V. (2021). Interaction of lanthanum, lutetium, and ytterbium oxides at 1600 °C, Powder Metallurgy and Metal Ceramics., 60(5-6), 337–346. https://doi.org/10.1007/s11106-021-00248-8
Chudinovych, O. V., Bykov, О. І., Sameliuk, A.V. (2021). Phase relation studies in the La2O3–Lu2O3–Yb2O3 system at 1500 °С, Journal of Chemistry and Technologies, 29(4), 485–494. doi.org/10.15421/jchemtech.v29i4.238943
Chudinovych, O. V., Shyrokov, O. V., Sameliuk, A.V. (2023). Phase equilibria in the La2O3–Lu2O3–Er2O3 system at 1500 and 1600 °С, Journal of chemistry and technologies, 31(1), 51–60. doi:10.15421/jchemtech.v31i1.27149
留言 (0)