STUDY OF MASS TRANSFER AND DIFFUSION PROCESSES OF SUCROSE INTO APPLE FRUIT PARTICLES

Deiana, M., Montoro, P., Jerković, I., Atzeri, A., Marijanović, Z., Serreli, G., Piacente, S., Ignazio, C., Tuberoso, G. (2019). First characterization of Pompia intrea candied fruit: The headspace chemical profile, polar extract composition and its biological activities. Food Research International, 120, 620–630. https://doi.org/10.1016/j.foodres.2018.11.016

Weijun, Ch., Yanyu, L., Bining, J. (2016). Dissipation behavior of five organophosphorus pesticides in kumquat sample during honeyed kumquat candied fruit processing. Food Control, 66, 87–92 https://doi.org/10.1016/j.foodcont.2016.01.033

Nunesa, C. Rato, A. E., Barros A. S., Saraiva J. A., Coimbra, M. A. (2009). Search for suitable maturation parameters to define the harvest maturity of plums (Prunus domestica L.): A case study of candied plums. Food Chemistry, 112(3), 570-574. https://doi.org/10.1016/j.foodchem.2008.06.007

A. Shukla, R.S. Shukla, C. Das, V. V. Goud. (2019). Gingerols infusion and multi-step process optimization for enhancement of color, sensory and functional profiles of candied mango. Food Chemistry, 300, 125195. https://doi.org/10.1016/j.foodchem.2019.125195

M. Aguirre-García, O. Cortés-Zavaleta, P. Hernández-Carranza, H. Ruiz-Espinosa, C. Enrique Ochoa-Velasco, I. Ruiz-López. (2023). Modeling the impregnation of roselle antioxidants into papaya cubes. Journal of Food Engineering, 357, 111585 https://doi.org/10.1016/j.jfoodeng.2023.111585

M. Aguirre-García, P. Hernández-Carranza, O. Cortés-Zavaleta, H. Ruiz-Espinosa, C.E. Ochoa-Velasco, I.I. Ruiz-López. (2020). Mass transfer analysis of bioactive compounds in apple wedges impregnated with beetroot juice: A 3D modelling approach. Journal of Food Engineering, 282, 110003. https://doi.org/10.1016/j.jfoodeng.2020.110003

Adsare, S. R., Bellary, A. N., Sowbhagya, H.B., Baskaran, R., Prakash, M., Rastogi, N. K. (2016). Osmotic treatment for the impregnation of anthocyanin in candies from Indian gooseberry (Emblica officinalis). Journal of Food Engineering, 175, 24–32. https://doi.org/10.1016/j.jfoodeng.2015.11.023

Aguirre-García, M., Cortés-Zavaleta, O., Ruiz-Espinosa, H., Ochoa-Velasco, C.E., Ruiz-López, I.I. (2022). The role of coupled water and solute diffusion and product shrinkage during osmotic dehydration. Journal of Food Engineering, 331, 111121. https://doi.org/10.1016/j.jfoodeng.2022.111121

Ramos-Morales, M., Aguirre-García, M., Cortés-Zavaleta, O., Ruiz-Espinosa, H., Estévez-Sánchez, K. H., Enrique, C., Ochoa-Velasco, C.E., Ruiz-López, I. I. (2024). Improving the bioactive content in honeydew melon by impregnation with Hibiscus extract/sucrose solutions: A coupled mass transfer analysis. Food and Bioproducts Processing, 144, 1–12. https://doi.org/10.1016/j.fbp.2023.12.001

Zecchi, B., Gerla P. (2020). Effective diffusion coefficients and mass flux ratio during osmotic dehydration considering real shape and shrinkage. Journal of Food Engineering, 274, 109821

Prithani, R., Dash, K. K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64, 102407 https://doi.org/10.1016/j.ifset.2020.102407

Abrahão, F. R., Corrêa, J. L. G. (2021). Osmotic dehydration: More than water loss and solid gain. Critical Reviews in Food Science and Nutrition, 63, 2970–2989. https://doi.org/10.1080/10408398.2021.1983764

Macedo, L. L., da Silva Araújo, C., Vimercati, W. C., Saraiva, S. H., Teixeira, L. J. Q. (2021). Influence of yacon syrup concentration and drying air temperature on properties of osmotically pre-dehydrated dried banana. Heat and Mass Transfer, 57(3), 441–451. https://doi.org/10.1007/s00231-020-02966-y

Huzova, I. O., Atamanyuk, V. M. (2022). Dynamics of drying processes of plant raw material in the period of decreasing speed. Journal of Chemistry and Technologies, 30(3), 419–430. https://doi.org/10.15421/jchemtech.v30i3.259694

Huzova, I.O., Atamanyuk, V.M. (2021). Mathematical interpretation of dynamics of temperature change during drying of hot monodisperse layer of organic raw materials. Journal of Chemistry and Technologies, 28(3), 278–288 https://doi.org/10.15421/082030

Huzova, I. (2020). Investigation of the energy-saving method during candied fruits filtration drying. Periodica Polytechnica Chemical Engineering, 64(4), 555–561. https://doi.org/10.3311/PPch.15107

Miletić, N., Popović, B., Mitrović, O., Kandić, M., Leposavić, A. (2014). Phenolic compounds and antioxidant capacity of dried and candied fruits commonly consumed in Serbia. Czech journal of food sciences, 32(4), 360–398. https://doi.org/10.17221/166/2013-CJFS

Sharma, A., Bachheti, A., Sharma, P., Bachheti, R. K., Husen, A. (2020). Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Current research in biotechnology, 2, 145–160. https://doi.org/10.1016/j.crbiot.2020.11.001

Ahmed, M. Özcan, I.A., Uslu, M.M. (2024). The Effects of Microwave and Oven Drying on Bioactive Compounds Individual Phenolic Constituents and the Fatty Acid Profiles of Bitter Orange, Mandarin and Grapefruit Peel and Oils. Waste Biomass Valor, 15, 4735 – 4746

https://doi.org/10.1007/s12649-024-02488-2

Ashtiani, S. M., Aghkhani, M. H., Feizy, J., Martynenko, A. (2023). Effect of cold plasma pretreatment coupled with osmotic dehydration on drying kinetics and quality of mushroom (Agaricus bisporus). Food and Bioprocess Technology, 16, 2854–2876. https://doi.org/10.1007/s11947-023-03096-z

Contigiani, E. V., Jaramillo-Sánchez, G., Castro, M. A., Gómez, P. L., Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: Fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650. https://doi.org/10.1007/s11947-018-2127-0

Huzova, I., Atamanyuk, V. (2023). Study on the kinetics, hydrodynamics and mass transfer of the process of zucchini fruits saturation with sucrose from an aqueous solution. Food Science and Technology, 16(4), 56–63. https://doi.org/10.15673/fst.v16i4.2541

Huzova, I. (2023). Study on the diffusion process of zucchini fruits saturation with sucrose from an aqueous solution. Journal of Chemistry and Technologies, 31(3), 552–562. https://doi.org/10.15421/jchemtech.v31i3.280561

Atamanyuk, V., Huzova, I., Gnativ, Z. (2017). Study of diffusion processes in pumpkin particles during candied fruits production. Food Science and Technology, 11(4), 21–28.https://doi.org/10.15673/fst.v11i4.727

Fedoryshyn, O.M., Petrina, R.O., Krvavych, A.S., Hubrii, Z.V., Atamanyuk, V.M. (2023). Research on aspects of the extraction kinetics of metabolites of carlina acaulis while mixing. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 3–10. http://dx.doi.org/10.32434/0321-4095-2023-146-1-3-10

Gumnitsky, J., Venger, L., Sabadash, V., Hyvlud, A., Gnativ, Z. (2022). Physical And Mathematical Models Of Target Component Extraction From Rectlinear Capillaries. Chemistry and Chemical Technology, 16(1), 112–117. https://doi.org/10.23939/chcht16.01.112

留言 (0)

沒有登入
gif