Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment

Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

Article  CAS  PubMed  Google Scholar 

Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Fares, C. M., Allen, E. M. V., Drake, C. G., Allison, J. P. & Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 (2019).

Article  PubMed  Google Scholar 

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

Article  PubMed  Google Scholar 

Almagro, J., Messal, H. A., Elosegui-Artola, A., Rheenen, Jvan & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

Article  CAS  PubMed  Google Scholar 

Shi, R., Tang, Y. & Miao, H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm 1, 47–68 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kartikasari, A. E. R., Huertas, C. S., Mitchell, A. & Plebanski, M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 11, 692142 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y., Guo, J. & Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 10, 3099–3117 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monte, U. D. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 8, 505–506 (2009).

Article  PubMed  Google Scholar 

Mallet, M. et al. Tumour burden and antigen-specific T cell magnitude represent major parameters for clinical response to cancer vaccine and TCR-engineered T cell therapy. Eur. J. Cancer 171, 96–105 (2022).

Article  CAS  PubMed  Google Scholar 

Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

Article  CAS  PubMed  Google Scholar 

Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021).

Article  CAS  PubMed  Google Scholar 

D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magen, A. et al. Intratumoral dendritic cell–CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schietinger, A., Philip, M., Liu, R. B., Schreiber, K. & Schreiber, H. Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. J. Exp. Med. 207, 2469–2477 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Csh Perspect. Biol. 11, a028480 (2019).

CAS  Google Scholar 

Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 42, 1202–1216.e8 (2024).

Article  CAS  PubMed  Google Scholar 

Schoenberger, S. P., Toes, R. E. M., Voort, E. I. H., van der, Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

Article  CAS  PubMed  Google Scholar 

Ossendorp, F., Mengedé, E., Camps, M., Filius, R. & Melief, C. J. M. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif