Adams J (1993) Structure-activity and dose-response relationships in the neural and behavioral teratogenesis of retinoids. Neurotoxicol Teratol 15:193–202. https://doi.org/10.1016/0892-0362(93)90015-G
Article CAS PubMed Google Scholar
Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46:175–185. https://doi.org/10.2307/2685209
Aouichaoui ARN, Fan F, Mansouri SS, Abildskov J, Sin G (2023) Combining group-contribution concept and graph neural networks toward interpretable molecular property models. J Chem Inf Model 63:725–744. https://doi.org/10.1021/acs.jcim.2c01091
Article CAS PubMed Google Scholar
Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 26:1169–1175. https://doi.org/10.1093/bioinformatics/btq112
Article CAS PubMed Google Scholar
Basant N, Gupta S, Singh KP (2016) QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes. Toxicol Res 5:1029–1038. https://doi.org/10.1039/c6tx00083e
Beekhuijzen M (2017) The era of 3Rs implementation in developmental and reproductive toxicity (DART) testing: current overview and future perspectives. Reprod Toxicol 72:86–96. https://doi.org/10.1016/j.reprotox.2017.05.006
Article CAS PubMed Google Scholar
Begum TF, Carpenter D (2022) Health effects associated with phthalate activity on nuclear receptors. Rev Environ Health 37:567–583. https://doi.org/10.1515/reveh-2020-0162
Article CAS PubMed Google Scholar
Bon M, Bilsland A, Bower J, McAulay K (2022) Fragment-based drug discovery—the importance of high-quality molecule libraries. Mol Oncol 16:3761–3777. https://doi.org/10.1002/1878-0261.13277
Article CAS PubMed PubMed Central Google Scholar
Carbery A, Skyner R, von Delft F, Deane CM (2022) Fragment libraries designed to be functionally diverse recover protein binding information more efficiently than standard structurally diverse libraries. J Med Chem 65:11404–11413. https://doi.org/10.1021/acs.jmedchem.2c01004
Article CAS PubMed PubMed Central Google Scholar
Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: Where have you been? Where are you going to? J Med Chem 57:4977–5010. https://doi.org/10.1021/jm4004285
Article CAS PubMed PubMed Central Google Scholar
Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286. https://doi.org/10.1021/jm300871x
Article CAS PubMed Google Scholar
Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJL, Holm E, Ong SP, Wolverton C (2022) Recent advances and applications of deep learning methods in materials science. NPJ Comput Mater 8:59. https://doi.org/10.1038/s41524-022-00734-6
Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of compiling and using’drug-like’chemical fragment spaces. ChemMedChem 3:1503. https://doi.org/10.1002/cmdc.200800178
Article CAS PubMed Google Scholar
Diao Y, Hu F, Shen Z, Li H (2023) MacFrag: segmenting large-scale molecules to obtain diverse fragments with high qualities. Bioinformatics. https://doi.org/10.1093/bioinformatics/btad012
Article PubMed PubMed Central Google Scholar
Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280. https://doi.org/10.1021/ci010132r
Article CAS PubMed Google Scholar
ECHA (2023) European Chemicals Agency. https://echa.europa.eu/. Accessed 8 May 2024.
ElMazoudy RH, Attia AA (2012) Endocrine-disrupting and cytotoxic potential of anticholinesterase insecticide, diazinon in reproductive toxicity of male mice. J Hazard Mater 209–210:111–120. https://doi.org/10.1016/j.jhazmat.2011.12.073
Article CAS PubMed Google Scholar
Fang X, Liu L, Lei J, He D, Zhang S, Zhou J, Wang F, Wu H, Wang H (2022) Geometry-enhanced molecular representation learning for property prediction. Nat Mach Intell 4:127–134. https://doi.org/10.1038/s42256-021-00438-4
Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E, Group* tDMSI (2001) A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 57:613–620. https://doi.org/10.1212/wnl.57.4.613
Article CAS PubMed Google Scholar
Feng H, Zhang L, Li S, Liu L, Yang T, Yang P, Zhao J, Arkin IT, Liu H (2021) Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Toxicol Lett 340:4–14. https://doi.org/10.1016/j.toxlet.2021.01.002
Article CAS PubMed Google Scholar
Ghorbanzadeh M, Zhang J, Andersson PL (2016) Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish. J Chemom 30:298–307. https://doi.org/10.1002/cem.2791
GHS (2023) Globally Harmonized System of Classification and Labelling of Chemicals. https://unece.org/transport/dangerous-goods/ghs-rev10-2023. Accessed 8 May 2024.
Giacomini AC, Bueno BW, Marcon L, Scolari N, Genario R, Demin KA, Kolesnikova TO, Kalueff AV, de Abreu MS (2020) An acetylcholinesterase inhibitor, donepezil, increases anxiety and cortisol levels in adult zebrafish. J Psychopharmacol 34:1449–1456. https://doi.org/10.1177/0269881120944155
Article CAS PubMed Google Scholar
Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c490::AID-JCC1%3e3.0.CO;2-P
He J-H, Gao J-M, Huang C-J, Li C-Q (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol 42:35–42. https://doi.org/10.1016/j.ntt.2014.01.006
Article CAS PubMed Google Scholar
Hemmerich J, Ecker GF (2020) In silico toxicology: from structure–activity relationships towards deep learning and adverse outcome pathways. Wires Comput Mol Sci 10:e1475. https://doi.org/10.1002/wcms.1475
Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, Mow T (2014) Exploratory toxicology as an integrated part of drug discovery. Part I: Why and how. Drug Discovery Today 19:1131–1136. https://doi.org/10.1016/j.drudis.2013.12.008
Article CAS PubMed Google Scholar
Hukkerikar AS, Kalakul S, Sarup B, Young DM, Sin G, Gani R (2012) Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis. J Chem Inf Model 52:2823–2839. https://doi.org/10.1021/ci300350r
Article CAS PubMed Google Scholar
Jiang C, Yang H, Di P, Li W, Tang Y, Liu G (2019) In silico prediction of chemical reproductive toxicity using machine learning. J Appl Toxicol 39:844–854. https://doi.org/10.1002/jat.3772
Article CAS PubMed Google Scholar
Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B, Wang Z, Shen C, Cao D, Wu J, Hou T (2021) Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J Cheminform 13:1–23. https://doi.org/10.1186/s13321-020-00479-8
留言 (0)