Acquired Bortezomib Resistance in Multiple Myeloma: From Mechanisms to Strategy

Cowan AJ, Green DJ, Kwok M, et al. Diagnosis and Management of Multiple Myeloma: a review. JAMA. 2022;327:464.

Article  PubMed  Google Scholar 

Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ. 2020:m3176.

van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410–27.

Article  PubMed  Google Scholar 

Dimopoulos MA, Moreau P, Terpos E, et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2021;32:309–22.

Article  PubMed  Google Scholar 

Kumar SK, Callander NS, Adekola K, et al. Multiple myeloma, version 3.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2020;18:1685–717.

Article  Google Scholar 

Zhao J, Zhai B, Gygi SP, et al. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA. 2015;112(52):15790–7.

Article  PubMed  PubMed Central  Google Scholar 

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

Article  PubMed  PubMed Central  Google Scholar 

Hanahan D, Weinberg RA. Hallmarks of Cancer: the next generation. Cell. 2011;144:646–74.

Article  PubMed  Google Scholar 

de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374–403.

Article  PubMed  Google Scholar 

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753.

Article  PubMed  Google Scholar 

Ria R, Catacchio I, Berardi S, et al. HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin Cancer Res. 2014;20(4):847–58.

Article  PubMed  Google Scholar 

Maiso P, Huynh D, Moschetta M, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res. 2015;75:2071–82.

Article  PubMed  PubMed Central  Google Scholar 

Corre J, Labat E, Espagnolle N, et al. Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res. 2012;72:1395–406.

Article  PubMed  Google Scholar 

Wang J, Hendrix A, Hernot S, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66.

Article  PubMed  Google Scholar 

Chauhan D, Singh AV, Brahmandam M, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009;16:309–23.

Article  PubMed  PubMed Central  Google Scholar 

Chen J, He D, Chen Q, et al. BAFF is involved in macrophage-induced bortezomib resistance in myeloma. Cell Death Dis. 2017;8:e3161.

Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Du Z, Tu C, et al. Hypoxic bone marrow stromal cells secrete miR-140-5p and miR-28-3p that target SPRED1 to confer drug resistance in multiple myeloma. Cancer Res. 2024;84:39–55.

Article  PubMed  Google Scholar 

Noborio-Hatano K, Kikuchi J, Takatoku M, et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene. 2009;28:231–42.

Article  PubMed  Google Scholar 

Azab AK, Runnels JM, Pitsillides C, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113:4341–51.

Article  PubMed  PubMed Central  Google Scholar 

Stessman H a F, Mansoor A, Zhan F, et al. Reduced CXCR4 expression is associated with extramedullary disease in a mouse model of myeloma and predicts poor survival in multiple myeloma patients treated with bortezomib. Leukemia. 2013;27:2075–7.

Article  PubMed  PubMed Central  Google Scholar 

Sevilla-Movilla S, Arellano-Sánchez N, Martínez-Moreno M, et al. Upregulated expression and function of the α4β1 integrin in multiple myeloma cells resistant to bortezomib. J Pathol. 2020;252:29–40.

Article  PubMed  Google Scholar 

Natoni A, Smith T a G, Keane N, et al. E-selectin ligands recognised by HECA452 induce drug resistance in myeloma, which is overcome by the E-selectin antagonist, GMI-1271. Leukemia. 2017;31:2642–51.

Article  PubMed  PubMed Central  Google Scholar 

Matsui W, Wang Q, Barber JP, et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008;68:190–7.

Article  PubMed  PubMed Central  Google Scholar 

Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit β5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112:2489–99.

Article  PubMed  Google Scholar 

Ri M, Iida S, Nakashima T, et al. Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia. 2010;24:1506–12.

Article  PubMed  Google Scholar 

Franke NE, Niewerth D, Assaraf YG, et al. Impaired bortezomib binding to mutant β5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia. 2012;26:757–68.

Article  PubMed  Google Scholar 

Lichter DI, Danaee H, Pickard MD, et al. Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood. 2012;120(23):4513–6.

Article  PubMed  PubMed Central  Google Scholar 

Barrio S, Stühmer T, Da-Viá M, et al. Spectrum and functional validation of PSMB5 mutations in multiple myeloma. Leukemia. 2019;33:447–56.

Article  PubMed  Google Scholar 

Yang Y, Gao Y, Huang J, et al. ISG20L2 suppresses bortezomib antimyeloma activity by attenuating bortezomib binding to PSMB5. JCI Insight. 2022;7(19):e157081.

Article  PubMed  PubMed Central  Google Scholar 

Haertle L, Barrio S, Munawar U, et al. Single-nucleotide variants and Epimutations induce proteasome inhibitor resistance in multiple myeloma. Clin Cancer Res. 2023;29:279–88.

Article  PubMed  Google Scholar 

Allmeroth K, Horn M, Kroef V, et al. Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia. 2021;35:887–92.

Article  PubMed  Google Scholar 

Yasui H, Hideshima T, Ikeda H, et al. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol. 2007;136:414–23.

Article  PubMed  Google Scholar 

Alonso S, Hernandez D, Chang Y-T, et al. Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. J Clin Invest. 2016;126:4460–8.

Article  PubMed  PubMed Central  Google Scholar 

Xie Y, Liu J, Jiang H, et al. Proteasome inhibitor induced SIRT1 deacetylates GLI2 to enhance hedgehog signaling activity and drug resistance in multiple myeloma. Oncogene. 2020;39:922–34.

Article  PubMed  Google Scholar 

Muguruma Y, Yahata T, Warita T, et al. Jagged1-induced notch activation contributes to the acquisition of bortezomib resistance in myeloma cells. Blood Cancer J. 2017;7:650.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif