Palmer, D. & Heckman, R. Extreme temperature range microelectronics. IEEE Trans. Compon. Hybrids Manuf. Technol. 1, 333–340 (1978).
Draper, B. & Palmer, D. Extension of high-temperature electronics. IEEE Trans. Compon. Hybrids Manuf. Technol. 2, 399–404 (1979).
Wondrak, W. Physical limits and lifetime limitations of semiconductor devices at high temperatures. Microelectron. Reliab. 39, 1113–1120 (1999).
Pathumudy, R. D. & Prabhu, K. N. Thermal interface materials for cooling microelectronic systems: present status and future challenges. J. Mater. Sci. Mater. Electron. 32, 11339–11366 (2021).
Hoang, C. H. et al. A review of recent developments in pumped two-phase cooling technologies for electronic devices. IEEE Trans. Compon. Packaging Manuf. Technol. 11, 1565–1582 (2021).
Karulkar, P. Ultra-thin SOI MOSFETs at high temperature. In Proc. 1993 IEEE Int. SOI Conf. 136–137 (IEEE, 1993).
Kappert, H., Kordas, N., Dreiner, S., Paschen, U. & Kokozinski, R. High temperature SOI CMOS technology and circuit realization for applications up to 300 °C. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 1162–1165 (IEEE, 2015).
Grella, K. et al. High temperature characterization up to 450 °C of MOSFETs and basic circuits realized in a silicon-on-insulator (SOI) CMOS technology. J. Microelectron. Electron. Packaging 10, 67–72 (2013).
Francis, T., Gentinne, F. & Colinge, J. P. SOI technology for high-temperature applications. In 1992 International Technical Digest on Electron Devices Meeting 353–356 (IEEE, 1992).
Diab, A., Sevilla, G. A. T., Cristoloveanu, S. & Hussain, M. M. Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins. IEEE Trans. Electron. Devices 61, 3978–3984 (2014).
Flandre, D. et al. Fully depleted SOI CMOS technology for heterogeneous micropower, high-temperature or RF microsystems. Solid State Electron. 45, 541–549 (2001).
Johnson, R. W., Evans, J. L., Jacobsen, P., Thompson, J. R. & Christopher, M. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packaging Manuf. 27, 164–176 (2004).
Jones-Jackson, S., Rodriguez, R., Yang, Y., Lopera, L. & Emadi, A. Overview of current thermal management of automotive power electronics for traction purposes and future directions. IEEE Trans. Transport. Electrific. 8, 2412–2428 (2022).
Khanna, V. K. Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (IOP Publishing, 2023).
Logothetidis, S., Petalas, J., Polatoglou, H. & Fuchs, D. Origin and temperature dependence of the first direct gap of diamond. Phys. Rev. B 46, 4483 (1992).
Zhang, Y., Wang, Z., Xi, J. & Yang, J. Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization. J. Phys. Condens. Matter 32, 475503 (2020).
Leblanc, C. et al. Vertical van der Waals heterojunction diodes comprising 2D semiconductors on 3D β-Ga2O3. Nanoscale 15, 9964–9972 (2023).
Article CAS PubMed Google Scholar
Clark, C., Dean, P. & Harris, P. Intrinsic edge absorption in diamond. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 277, 312–329 (1964).
Lee, C., Rock, N. D., Islam, A., Scarpulla, M. A. & Ertekin, E. Electron–phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga2O3. APL Mater. 11, 011106 (2023).
Palmour, J., Kong, H. & Davis, R. High‐temperature depletion‐mode metal‐oxide‐semiconductor field‐effect transistors in beta‐SiC thin films. Appl. Phys. Lett. 51, 2028–2030 (1987).
Zetterling, C. M., Lanni, L., Ghandi, R., Malm, B. G. & Östling, M. Future high temperature applications for SiC integrated circuits. Phys. Stat. Sol. C 9, 1647–1650 (2012).
Holmes, J. et al. Extended high-temperature operation of silicon carbide CMOS circuits for Venus surface application. J. Microelectron. Electron. Packaging 13, 143–154 (2016).
Neudeck, P. G. et al. Recent progress in extreme environment durable SiC JFET-R integrated circuit technology. In IMAPSource Proceedings 1–6 (HiTEC, 2023).
Casady, J. & Johnson, R. W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996).
Hornberger, J. et al. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. In 2004 IEEE Aerosp. Conf. Proc. Vol. 4, 2538–2555 (IEEE, 2004).
Unger, C. & Pfost, M. Thermal stability of SiC-MOSFETs at high temperatures. IEEE Trans. Electron. Devices 66, 4666–4672 (2019).
Schmid, U., Sheppard, S. T. & Wondrak, W. High temperature performance of NMOS integrated inverters and ring oscillators in 6H-SiC. IEEE Trans. Electron. Devices 47, 687–691 (2000).
Francis, A. M. et al. High-temperature operation of silicon carbide CMOS circuits for Venus surface application. IMAPSource Proceedings 242–248 (IMAPS, 2016).
Tega, N., Sato, S. & Shima, A. Comparison of extremely high-temperature characteristics of planar and three-dimensional SiC MOSFETs. IEEE Electron. Device Lett. 40, 1382–1384 (2019).
Wang, J. & Jiang, X. Review and analysis of SiC MOSFETs’ ruggedness and reliability. IET Power Electron. 13, 445–455 (2020).
Kang, J. et al. High Ion/Ioff ratio 4H-SiC MISFETs with stable operation at 500 °C using SiO2/SiNx/Al2O3 gate stacks. Appl. Phys. Lett. 122, 082906 (2023).
Neudeck, P. G. et al. Stable electrical operation of 6H–SiC JFETs and ICs for thousands of hours at 500 oC. IEEE Electron. Device Lett. 29, 456–459 (2008).
Neudeck, P. G. et al. Operational testing of 4H-SiC JFET ICs for 60 days directly exposed to Venus surface atmospheric conditions. IEEE J. Electron. Devices Soc. 7, 100–110 (2018).
Neudeck, P. G. et al. Year-long 500 °C operational demonstration of up-scaled 4H-SiC JFET integrated circuits. J. Microelectron. Electron. Packaging 15, 163–170 (2018).
Neudeck, P. G. et al. Extreme temperature 6H‐SiC JFET integrated circuit technology. Phys. Status Solidi 206, 2329–2345 (2009).
Neudeck, P. G., Spry, D. J., Chen, L., Prokop, N. F. & Krasowski, M. J. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron. Device Lett. 38, 1082–1085 (2017).
Neudeck, P. G. et al. Upscaling of 500 °C durable SiC JFET-R integrated circuits. Additional Pap. Present. 2021, 000064–000068 (2021).
Huang, L., Xia, M. & Gu, X. A critical review of theory and progress in ohmic contacts to p-type SiC. J. Cryst. Growth 531, 125353 (2020).
Chiolino, N., Francis, A., Holmes, J. & Barlow, M. Digital logic synthesis for 470 celsius silicon carbide electronics. Additional Pap. Present. 2018, 000064–000070 (2018).
Kirschman, R. GaN Based Transistors for High Temperature Applications 489–493 (Wiley-IEEE Press, 1999).
Khan, M. A. & Shur, M. S. GaN based transistors for high temperature applications. Mater. Sci. Eng. B 46, 69–73 (1997).
Hassan, A., Savaria, Y. & Sawan, M. GaN integration technology, an ideal candidate for high-temperature applications: a review. IEEE Access. 6, 78790–78802 (2018).
Yuan, M. et al. High temperature robustness of enhancement-mode p-GaN-gated AlGaN/GaN HEMT technology. In 2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA) 40–44 (IEEE, 2022).
Lee, H., Ryu, H., Kang, J. & Zhu, W. High temperature operation of E-mode and D-mode AlGaN/GaN MIS-HEMTs with recessed gates. IEEE J. Electron. Devices Soc. 11, 167–173 (2023).
Yuan, M. et al. GaN ring oscillators operational at 500 °C based on a GaN-on-Si platform. IEEE Electron. Device Lett. 43, 1842–1845 (2022).
Yuan, M., Xie, Q., Niroula, J., Chowdhury, N. & Palacios, T. GaN memory operational at 300 °C. IEEE Electron. Device Lett. 43, 2053–2056 (2022).
Yuan, M. et al. Enhancement-mode GaN transistor technology for harsh environment operation. IEEE Electron. Device Lett. 44, 1068–1071 (2023).
Lee, H., Ryu, H. & Zhu, W. Thermally hardened AlGaN/GaN MIS-HEMTs based on multilayer dielectrics and silicon nitride passivation. Appl. Phys. Lett. 122, 112103 (2023).
留言 (0)