Reprogramming the genetic code with flexizymes

Conradi, R. A., Hilgers, A. R., Ho, N. F. & Burton, P. S. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8, 1453–1460 (1991).

Article  PubMed  CAS  Google Scholar 

Bockus, A. T. et al. Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of sanguinamide A analogues. J. Med. Chem. 58, 7409–7418 (2015).

Article  PubMed  CAS  Google Scholar 

Furukawa, A. et al. Drug-like properties in macrocycles above MW 1000: backbone rigidity versus side-chain lipophilicity. Angew. Chem. Int. Ed. Engl. 59, 21571–21577 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Miller, S. M. et al. Comparison of the proteolytic susceptibilities of homologous l‐amino acid, d‐amino acid, and N‐substituted glycine peptide and peptoid oligomers. Drug Dev. Res. 35, 20–32 (2008).

Article  Google Scholar 

Zhao, Y. et al. Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6, 122 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V. & Seebach, D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2, 445–455 (2001).

Article  PubMed  CAS  Google Scholar 

Gopi, H. N. et al. Proteolytic stability of β-peptide bonds probed using quenched fluorescent substrates incorporating a hemoglobin cleavage site. FEBS Lett. 535, 175–178 (2003).

Article  PubMed  CAS  Google Scholar 

Cabrele, C., Martinek, T. A., Reiser, O. & Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 57, 9718–9739 (2014).

Article  PubMed  CAS  Google Scholar 

Forster, A. et al. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl Acad. Sci. USA 100, 6353–6357 (2003).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hohsaka, T., Ashizuka, Y., Murakami, H. & Sisido, M. Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J. Am. Chem. Soc. 118, 9778–9779 (1996).

Article  CAS  Google Scholar 

Bain, J. D., Switzer, C., Chamberlin, A. R. & Benner, S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356, 537–539 (1992).

Article  PubMed  CAS  Google Scholar 

Hirao, I. et al. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20, 177–182 (2002).

Article  PubMed  CAS  Google Scholar 

Feldman, A. W. et al. Optimization of replication, transcription, and translation in a semi-synthetic organism. J. Am. Chem. Soc. 141, 10644–10653 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Taiji, M., Yokoyama, S. & Miyazawa, T. Transacylation rates of (aminoacyl)adenosine moiety at the 3′-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22, 3220–3225 (1983).

Article  PubMed  CAS  Google Scholar 

Nawrot, B., Milius, W., Ejchart, A., Limmer, S. & Sprinzl, M. The structure of 3′-O-anthraniloyladenosine, an analogue of the 3′-end of aminoacyl-tRNA. Nucleic Acids Res. 25, 948–954 (1997).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Taiji, M., Yokoyama, S. & Miyazawa, T. Aminoacyl-tRNA exclusively in the 3′-isomeric form is bound to polypeptide chain elongation factor Tu. J. Biochem. 98, 1447–1453 (1985).

Article  PubMed  CAS  Google Scholar 

Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

Article  PubMed  CAS  Google Scholar 

Stortchevoi, A. A. Misacylation of tRNA in prokaryotes: a re-evaluation. Cell Mol. Life Sci. 63, 820–831 (2006).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

Article  PubMed  CAS  Google Scholar 

Wang, Y. S., Fang, X., Wallace, A. L., Wu, B. & Liu, W. R. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 134, 2950–2953 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fahnestock, S. & Rich, A. Ribosome-catalyzed polyester formation. Science 173, 340–343 (1971).

Article  PubMed  CAS  Google Scholar 

Robertson, S. A., Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. The use of 5′-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res. 17, 9649–9660 (1989).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).

Article  PubMed  CAS  Google Scholar 

Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).

Article  PubMed  CAS  Google Scholar 

Katoh, T. & Suga, H. In vitro genetic code reprogramming for the expansion of usable noncanonical amino acids. Annu. Rev. Biochem. 91, 221–243 (2022).

Article  PubMed  CAS  Google Scholar 

Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).

Article  PubMed  CAS  Google Scholar 

Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).

Article  PubMed  CAS  Google Scholar 

Lee, N. & Suga, H. A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7, 1043–1051 (2001).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ramaswamy, K., Wei, K. & Suga, H. Minihelix-loop RNAs: minimal structures for aminoacylation catalysts. Nucleic Acids Res. 30, 2162–2171 (2002).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Saito, H., Watanabe, K. & Suga, H. Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7, 1867–1878 (2001).

留言 (0)

沒有登入
gif