Conradi, R. A., Hilgers, A. R., Ho, N. F. & Burton, P. S. The influence of peptide structure on transport across Caco-2 cells. Pharm. Res. 8, 1453–1460 (1991).
Article PubMed CAS Google Scholar
Bockus, A. T. et al. Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of sanguinamide A analogues. J. Med. Chem. 58, 7409–7418 (2015).
Article PubMed CAS Google Scholar
Furukawa, A. et al. Drug-like properties in macrocycles above MW 1000: backbone rigidity versus side-chain lipophilicity. Angew. Chem. Int. Ed. Engl. 59, 21571–21577 (2020).
Article PubMed PubMed Central CAS Google Scholar
Miller, S. M. et al. Comparison of the proteolytic susceptibilities of homologous l‐amino acid, d‐amino acid, and N‐substituted glycine peptide and peptoid oligomers. Drug Dev. Res. 35, 20–32 (2008).
Zhao, Y. et al. Antimicrobial activity and stability of the d-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6, 122 (2016).
Article PubMed PubMed Central Google Scholar
Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V. & Seebach, D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2, 445–455 (2001).
Article PubMed CAS Google Scholar
Gopi, H. N. et al. Proteolytic stability of β-peptide bonds probed using quenched fluorescent substrates incorporating a hemoglobin cleavage site. FEBS Lett. 535, 175–178 (2003).
Article PubMed CAS Google Scholar
Cabrele, C., Martinek, T. A., Reiser, O. & Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 57, 9718–9739 (2014).
Article PubMed CAS Google Scholar
Forster, A. et al. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc. Natl Acad. Sci. USA 100, 6353–6357 (2003).
Article PubMed PubMed Central CAS Google Scholar
Hohsaka, T., Ashizuka, Y., Murakami, H. & Sisido, M. Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J. Am. Chem. Soc. 118, 9778–9779 (1996).
Bain, J. D., Switzer, C., Chamberlin, A. R. & Benner, S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356, 537–539 (1992).
Article PubMed CAS Google Scholar
Hirao, I. et al. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20, 177–182 (2002).
Article PubMed CAS Google Scholar
Feldman, A. W. et al. Optimization of replication, transcription, and translation in a semi-synthetic organism. J. Am. Chem. Soc. 141, 10644–10653 (2019).
Article PubMed PubMed Central CAS Google Scholar
Taiji, M., Yokoyama, S. & Miyazawa, T. Transacylation rates of (aminoacyl)adenosine moiety at the 3′-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22, 3220–3225 (1983).
Article PubMed CAS Google Scholar
Nawrot, B., Milius, W., Ejchart, A., Limmer, S. & Sprinzl, M. The structure of 3′-O-anthraniloyladenosine, an analogue of the 3′-end of aminoacyl-tRNA. Nucleic Acids Res. 25, 948–954 (1997).
Article PubMed PubMed Central CAS Google Scholar
Taiji, M., Yokoyama, S. & Miyazawa, T. Aminoacyl-tRNA exclusively in the 3′-isomeric form is bound to polypeptide chain elongation factor Tu. J. Biochem. 98, 1447–1453 (1985).
Article PubMed CAS Google Scholar
Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).
Article PubMed CAS Google Scholar
Stortchevoi, A. A. Misacylation of tRNA in prokaryotes: a re-evaluation. Cell Mol. Life Sci. 63, 820–831 (2006).
Article PubMed PubMed Central CAS Google Scholar
Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).
Article PubMed CAS Google Scholar
Wang, Y. S., Fang, X., Wallace, A. L., Wu, B. & Liu, W. R. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 134, 2950–2953 (2012).
Article PubMed PubMed Central CAS Google Scholar
Fahnestock, S. & Rich, A. Ribosome-catalyzed polyester formation. Science 173, 340–343 (1971).
Article PubMed CAS Google Scholar
Robertson, S. A., Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. The use of 5′-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res. 17, 9649–9660 (1989).
Article PubMed PubMed Central CAS Google Scholar
Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).
Article PubMed CAS Google Scholar
Goto, Y., Katoh, T. & Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc. 6, 779–790 (2011).
Article PubMed CAS Google Scholar
Katoh, T. & Suga, H. In vitro genetic code reprogramming for the expansion of usable noncanonical amino acids. Annu. Rev. Biochem. 91, 221–243 (2022).
Article PubMed CAS Google Scholar
Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).
Article PubMed CAS Google Scholar
Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).
Article PubMed CAS Google Scholar
Lee, N. & Suga, H. A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7, 1043–1051 (2001).
Article PubMed PubMed Central CAS Google Scholar
Ramaswamy, K., Wei, K. & Suga, H. Minihelix-loop RNAs: minimal structures for aminoacylation catalysts. Nucleic Acids Res. 30, 2162–2171 (2002).
Article PubMed PubMed Central CAS Google Scholar
Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).
Article PubMed PubMed Central CAS Google Scholar
Saito, H., Watanabe, K. & Suga, H. Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7, 1867–1878 (2001).
留言 (0)