GLP-1 receptor agonists as promising anti-inflammatory agents in heart failure with preserved ejection fraction

Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation. 109(21 Suppl 1):II2-10. https://doi.org/10.1161/01.CIR.0000129535.04194.38

Article  PubMed  Google Scholar 

Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

Article  PubMed  CAS  Google Scholar 

Ridker PM (2016) From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res 118(1):145–156. https://doi.org/10.1161/CIRCRESAHA.115.306656

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ridker PM, Bhatt DL, Pradhan AD, Glynn RJ, MacFadyen JG, Nissen SE (2023) Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. The Lancet 401(10384):1293–1301. https://doi.org/10.1016/S0140-6736(23)00215-5

Article  CAS  Google Scholar 

Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 107(3):499–511. https://doi.org/10.1161/01.CIR.0000052939.59093.45

Article  PubMed  Google Scholar 

Nicklas BJ, You T, Pahor M (2005) Behavioural treatments for chronic systemic inflammation: effects of dietary weight loss and exercise training. CMAJ Canadian Med Assoc J 172(9):1199–1209. https://doi.org/10.1503/cmaj.1040769

Article  Google Scholar 

Simmonds SJ, Cuijpers I, Heymans S, Jones EAV (2020) Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9(1):242. https://doi.org/10.3390/cells9010242

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schiattarella GG, Rodolico D, Hill JA (2021) Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res 117(2):423–434. https://doi.org/10.1093/cvr/cvaa217

Article  PubMed  CAS  Google Scholar 

Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. https://doi.org/10.1016/j.jacc.2013.02.092

Article  PubMed  Google Scholar 

Nair N (2020) Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Rev Cardiovasc Med 21(4):531–540. https://doi.org/10.31083/J.RCM.2020.04.154

Article  PubMed  Google Scholar 

DuBrock HM, AbouEzzeddine OF, Redfield MM (2018) High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLoS ONE 13(8):1–16. https://doi.org/10.1371/journal.pone.0201836

Article  CAS  Google Scholar 

Sanders-Van Wijk S, Van Empel V, Davarzani N et al (2015) Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail 17(10):1006–1014. https://doi.org/10.1002/ejhf.414

Article  PubMed  CAS  Google Scholar 

D’Elia E, Vaduganathan M, Gori M, Gavazzi A, Butler J, Senni M (2015) Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail 17(12):1231–1239. https://doi.org/10.1002/ejhf.430

Article  PubMed  Google Scholar 

Westermann D, Lindner D, Kasner M et al (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4(1):44–52. https://doi.org/10.1161/CIRCHEARTFAILURE.109.931451

Article  PubMed  Google Scholar 

Tardif JC, Kouz S, Waters David D, Bertrand OF et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–2505. https://doi.org/10.1056/NEJMoa1912388

Article  PubMed  CAS  Google Scholar 

Nidorf SM, Fiolet ATL, Mosterd A et al (2020) Colchicine in patients with chronic coronary disease. N Engl J Med 383:1838–1847. https://doi.org/10.1056/NEJMoa2021372

Article  PubMed  CAS  Google Scholar 

Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/nejmoa1707914

Article  PubMed  CAS  Google Scholar 

Mann DL, McMurray JJV, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109(13):1594–1602. https://doi.org/10.1161/01.CIR.0000124490.27666.B2

Article  PubMed  CAS  Google Scholar 

Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH. Circulation 107(25):3133–3140. https://doi.org/10.1161/01.CIR.0000077913.60364.D2

Article  PubMed  CAS  Google Scholar 

Ridker PM (2021) From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc Res 117(11):e138–e140. https://doi.org/10.1093/cvr/cvab231

Ridker PM, Devalaraja M, Baeres FMM et al (2021) IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397(10289):2060–2069. https://doi.org/10.1016/S0140-6736(21)00520-1

Article  PubMed  CAS  Google Scholar 

Petrie M, Borlaug B, Buchholtz K et al (2024) HERMES: effects of ziltivekimab versus placebo on morbidity and mortality in patients with heart failure with mildly reduced or preserved ejection fraction and systemic inflammation. J Card Fail 30(1):126. https://doi.org/10.1016/j.cardfail.2023.10.024

Article  Google Scholar 

Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257. https://doi.org/10.1056/nejmoa1509225

Article  PubMed  CAS  Google Scholar 

Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322. https://doi.org/10.1056/nejmoa1603827

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844. https://doi.org/10.1056/nejmoa1607141

Article  PubMed  CAS  Google Scholar 

Holman RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239. https://doi.org/10.1056/nejmoa1612917

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (harmony outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529. https://doi.org/10.1016/S0140-6736(18)32261-X

Article  PubMed  CAS  Google Scholar 

Gerstein HC, Colhoun HM, Dagenais GR et al (2019) Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394(10193):121–130. https://doi.org/10.1016/S0140-6736(19)31149-3

Article  PubMed  CAS  Google Scholar 

Gerstein HC, Sattar N, Rosenstock J et al (2021) Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med 385(10):896–907. https://doi.org/10.1056/nejmoa2108269

Article  PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif