E.S. Dragan. Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal 243 (2014) 572-590. https://doi.org/10.1016/J.CEJ.2014.01.065
E.S. Dragan. Advances in interpenetrating polymer network hydrogels and their applications. Pure and Applied Chemistry 86 (2014) 1707-1721. https://doi.org/10.1515/PAC-2014-0713IS
A.P. Dhand, J.H. Galarraga, J.A. Burdick. Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. Trends in Biotechnology 39(5) (2021) 519-538. https://doi.org/10.1016/J.TIBTECH.2020.08.007
S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymer 12(11) (2020) 2702. https://doi.org/10.3390/POLYM12112702
T.C. Ho, C.C. Chang, H.P. Chan, T.W. Chung, C.W. Shu, K.P. Chuang, T.H. Duh, M.H. Yang, Y.C. Tyan. Hydrogels: Properties and Applications in Biomedicine. Molecules 27(9) (2022) 2902. https://doi.org/10.3390/MOLECULES27092902
P. Sikdar, M.M. Uddin, T.M. Dip, S. Islam, M.S. Hoque, A.K. Dhar, S. Wu. Recent advances in the synthesis of smart hydrogels. Materials Advances 2 (2021) 4532-4573. https://doi.org/10.1039/D1MA00193K
M.K. Sarangi, S. Padhi, L.D. Patel, G. Rath, S.S. Nanda, D.K. Yi. Interpenetrating polymer network based hydrogel: A smart approach for corroborating wound healing of various capacity. Journal of Applied Polymer Science 140(34) (2023) e54312. https://doi.org/10.1002/APP.54312
W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang. Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science 7 (2019) 843-855. https://doi.org/10.1039/C8BM01246F
M. Song, J. Wang, J. He, D. Kan, K. Chen, J. Lu. Synthesis of Hydrogels and Their Progress in Environmental Remediation and Antimicrobial Application. Gels 9(1) (2023) 16. https://doi.org/10.3390/GELS9010016
F. Ali, I. Khan, J. Chen, K. Akhtar, E.M. Bakhsh, S.B. Khan, F. Ali, I. Khan, J. Chen, K. Akhtar, E.M. Bakhsh, S.B. Khan. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 8(4) (2022) 205. https://doi.org/10.3390/GELS8040205
X. Zhu, T. Chen, B. Feng, J. Weng, K. Duan, J. Wang, X. Lu. Biomimetic Bacterial Cellulose-Enhanced Double-Network Hydrogel with Excellent Mechanical Properties Applied for the Osteochondral Defect Repair. ACS Biomaterials Science and Engineering 4(10) (2018) 3534-3544. https://doi.org/10.1021/ACSBIOMATERIALS.8B00682/SUPPL_FILE/AB8B00682_SI_001.PDF
S. Bi, P. Wang, S. Hu, S. Li, J. Pang, Z. Zhou, G. Sun, L. Huang, X. Cheng, S, Xing, X. Chen. Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate Polymers 224 (2019) 115176. https://doi.org/10.1016/J.CARBPOL.2019.115176
J.O. Buitrago, K.D. Patel, A. El-Fiqi, J.H. Lee, B. Kundu, H.H. Lee, H.W. Kim. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomaterialia 69 (2018) 218-233. https://doi.org/10.1016/J.ACTBIO.2017.12.026
Z. Wang, Y. Wang, X. Peng, Y. He, L. Wei, W. Su, J. Wu, L. Cui, Z. Liu, X. Guo. Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing. Colloids and Surfaces B: Biointerfaces 180 (2019) 237-244. https://doi.org/10.1016/J.COLSURFB.2019.04.043
X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han, B. Guo. Physical Double-Network Hydrogel Adhesives with Rapid Shape Adaptability, Fast Self-Healing, Antioxidant and NIR/pH Stimulus-Responsiveness for Multidrug-Resistant Bacterial Infection and Removable Wound Dressing. Advanced Functional Materials 30(17) (2020) 1910748. https://doi.org/10.1002/ADFM.201910748
Y. Tian, X. Wei, Z.J. Wang, P. Pan, F. Li, D. Ling, Z.L. Wu, Q. Zheng. A facile approach to prepare tough and responsive ultrathin physical hydrogel films as artificial muscles. ACS Applied Materials & Interfaces 9(39) (2017) 34349-34355. https://doi.org/10.1021/ACSAMI.7B10652
L. Li, K. Zhang, T. Wang, P. Wang, B. Xue, Y. Cao, L. Zhu, Q. Jiang. Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Materials & Design 189 (2020) 108492. https://doi.org/10.1016/J.MATDES.2020.108492
J.A. Claudio-Rizo, S.L. Carrillo-Cortés, J.J. Becerra-Rodríguez, M. Caldera-Villalobos, D.A. Cabrera-Munguía, N.G. Burciaga-Montemayor. Composite hydrogels comprised from interpenetrating networks of alginate-collagen-polyurethane for biomedicine. Journal of Materials Research 37(2) (2022) 636-649. https://doi.org/10.1557/S43578-021-00476-Z
Q. Wang, S. Li, Z. Wang, H. Liu, C. Li. Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. Journal of Applied Polymer Science 111(3) (2009) 1417-1425. https://doi.org/10.1002/APP.29026
J. Sievers, S. Zschoche, R. Dockhorn, J. Friedrichs, C. Werner, U. Freudenberg. Temperature-Induced Mechanomodulation of Interpenetrating Networks of Star Poly(ethylene glycol)-Heparin and Poly(N-isopropylacrylamide). ACS Applied Materials & Interfaces 11(45) (2019) 41862-41874. https://doi.org/10.1021/ACSAMI.9B11719
Y. Yue, X. Wang, J. Han, L. Yu, J. Chen, Q. Wu, J. Jiang. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydrate Polymers 206 (2019) 289-301. https://doi.org/10.1016/J.CARBPOL.2018.10.105
C.E. Vorwald, T. González-Fernandez, S. Joshee, P. Sikorski, J.K. Leach. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation. Acta Biomaterialia 108 (2020) 142-152. https://doi.org/10.1016/J.ACTBIO.2020.03.014
H. Suo, D. Zhang, J. Yin, J. Qian, Z.L. Wu, J. Fu. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Materials Science and Engineering: C 92 (2018) 612-620. https://doi.org/10.1016/J.MSEC.2018.07.016
D.Q. Li, S.Y. Wang, Y.J. Meng, Z.W. Guo, M.M. Cheng, J. Li. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydrate Polymers 268 (2021) 118244. https://doi.org/10.1016/J.CARBPOL.2021.118244
A.R. Kim, S.L. Lee, S.N. Park. Properties and in vitro drug release of pH- and temperature-sensitive double crosslinked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. International Journal of Biological Macromolecules 118 (2018) 731-740. https://doi.org/10.1016/J.IJBIOMAC.2018.06.061
L. Hua, M. Xie, Y. Jian, B. Wu, C. Chen, C. Zhao. Multiple-Responsive and Amphibious Hydrogel Actuator Based on Asymmetric UCST-Type Volume Phase Transition. ACS Applied Materials & Interfaces 11(46) (2019) 43641-43648. https://doi.org/10.1021/ACSAMI.9B17159
Y. Yan, M. Li, D. Yang, Q. Wang, F. Liang, X. Qu, D. Qiu, Z. Yang. Construction of Injectable Double-Network Hydrogels for Cell Delivery. Biomacromolecules 18 (2017) 2128-2138. https://doi.org/10.1021/ACS.BIOMAC.7B00452
F. Chen, P. Le, K. Lai, G.M. Fernandes-Cunha, D. Myung. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an in Situ-Forming Corneal Defect Filler. Chemistry of Materials 32(12) (2020) 5208-5216. https://doi.org/10.1021/ACS.CHEMMATER.0C01307
M.T.I. Mredha, N. Kitamura, T. Nonoyama, S. Wada, K. Goto, X. Zhang, T. Nakajima, T. Kurokawa, Y. Takagi, K. Yasuda, J.P. Gong. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials 132 (2017) 85-95. https://doi.org/10.1016/J.BIOMATERIALS.2017.04.005
W. Xiao, X. Qu, J. Li, L. Chen, Y. Tan, K. Li, B. Li, X. Liao. Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylate hyaluronic acid. European Polymer Journal 118 (2019) 382-392. https://doi.org/10.1016/J.EURPOLYMJ.2019.05.040
J.J. Mendoza-Villafaña, V.E. Fuantos-González, M.I. León-Campos, D.A. Cabrera Munguía, L.F. Cano-Salazar, T.E. Flores-Guía, R.B. Galindo, J.A. Claudio-Rizo. Impact of Incorporating Silver Nanoparticles (AgNPs) into Collagen-PU-PEG Hydrogels for Superior Antibacterial Efficacy in Severe Wounds. Asian Journal of Basic Science & Research 6(2) (2024) 50-63. https://doi.org/10.38177/AJBSR.2024.6203
F. Wahid, X.H. Hu, L.Q. Chu, S.R. Jia, Y.Y. Xie, C. Zhong. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. International Journal of Biological Macromolecules 122 (2019) 380-387. https://doi.org/10.1016/J.IJBIOMAC.2018.10.105
J.A. Claudio-Rizo, N.G. Hernandez-Hernandez, L.F. Cano-Salazar, T.E. Flores-Guía, F.N. de la Cruz-Durán, D.A. Cabrera-Munguía, J.J. Becerra-Rodríguez. Novel semi-interpenetrated networks based on collagen-polyurethane-polysaccharides in hydrogel state for biomedical applications. Journal of Applied Polymer Science 138(4) (2021) 49739. https://doi.org/10.1002/APP.49739
Y. Zhang, M. Song, Y. Diao, B. Li, L. Shi, R. Ran. Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC Advances 6 (2016) 112468-112476. https://doi.org/10.1039/C6RA24006B
J. Li, Z. Suo, J.J. Vlassak. Stiff, strong, and tough hydrogels with good chemical stability. Journal of Materials Chemistry B 2 (2014) 6708-6713. https://doi.org/10.1039/C4TB01194E
Y. Zhu, L. Lin, Y. Chen, Y. Song, W. Lu, Y. Guo. A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors. Soft Matter 16 (2020) 2238-2248. https://doi.org/10.1039/C9SM02303H
K. Yan, F. Xu, C. Wang, Y. Li, Y. Chen, X. Li, Z. Lu, D. Wang. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomaterials Science 8 (2020) 3193-3201. https://doi.org/10.1039/D0BM00425A
J.J. Mendoza-Villafaña, M.G. Franco-Martínez, J.A. Claudio-Rizo, D.A. Cabrera-Munguía, M. Caldera-Villalobos, M.I. León-Campos, T.E. Flores-Guía, Lucía, F. Cano-Salazar. Zn-based Metal-Organic Frameworks (MOFs) Incorporated into Collagen-Polysaccharide-based Composite Hydrogels for Their Use in Wound Healing. Asian Journal of Basic Science & Research 5 (2023) 41-54. https://doi.org/10.38177/AJBSR.2023.5106
N.J. Amaya-Chantaca, M. Caldera-Villalobos, J.A. Claudio-Rizo, T.E. Flores-Guía, J.J. Becerra-Rodríguez, F. Soriano-Corral, A. Herrera-Guerrero. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Progress in Biomaterials 12(1) (2022) 1-16. https://doi.org/10.1007/S40204-022-00210-W
N. Zoratto, P. Matricardi. Semi-IPNs and IPN-based hydrogels. Gels 1059 (2018) 91-124. https://doi.org/10.1016/B978-0-08-102179-8.00004-1
M.S. Silverstein. Interpenetrating polymer networks: So happy together? Polymer 207(6) (2020) 122929. https://doi.org/10.1016/J.POLYMER.2020.122929
S.Y. Zheng, C. Du, Z.L. Wu. Interpenetrating polymer networks hydrogels. Hydrogels for Tissue Engineering and Regenerative Medicine from Fundamentals to Applications (2024) 331-346. https://doi.org/10.1016/B978-0-12-823948-3.00021-X
P. Matricardi, C. Di Meo, T. Coviello, W.E. Hennink, F. Alhaique. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews 65(9) (2013) 1172-1187. https://doi.org/10.1016/J.ADDR.2013.04.002
C. De Maria, A. De Acuti, G. Vozzi, Indirect Rapid Prototyping for Tissue Engineering, in Essentials of 3D Biofabrication and Translation, A. Atala, J. J. Yoo, Eds., Academic Press, Italy, 2015, 153-164. https://doi.org/10.1016/b978-0-12-800972-7.00008-6
S. Caddeo, M. Boffito, S. Sartori. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Frontiers in Bioengineering and Biotechnology 5 (2017) 40. https://doi.org/10.3389/fbioe.2017.00040
C. Crosby, B. Stern, N. Kalkunte, S. Pedahzur, S. Ramesh, J. Zoldan. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Reviews in Chemical Engineering 38(3) (2022) 347-361. https://doi.org/10.1515/revce-2020-0039
C. Ma, J. Choi, Y. Jang, S. Kim, T. Bae, Y. Kim, J. Park, M. Lee. Mammalian and Fish Gelatin Methacryloyl-Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering. ACS Omega 6(27) (2021) 17433-17441. https://doi.org/10.1021/acsomega.1c01806
W. Wang, J. Dai, Y. Huang, X. Li, J. Yang, Y. Zheng, X. Shi. Extracellular matrix mimicking dynamic interpenetrating network hydrogel for skin tissue engineering. Chemical Engineering Journal 457 (2023) 141362. https://doi.org/10.1021/acsomega.1c01806
S. Liu, J. Yu, Y. Gan, X. Zhong, Z. Gao, S. Chen, Y. Xiong, G. Liu, S. Lin, A. McCarthy, J. Jonh, D. Wei, H. Hou. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Medical Research 10(16) (2023) 16. https://doi.org/10.1186/s40779-023-00448-w
D. Gyles, L. Castro, J. Silva, R. Ribeiro-Costa. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal 88 (2017) 373-392. https://doi.org/10.1016/j.eurpolymj.2017.01.027
G. Morello, G. De Laco, G. Gigli, A. Polini, F. Gervaso. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 9(2) (2023) 132. https://doi.org/10.3390/gels9020132
L. Zhao, Y. Zhou, J. Zhang, H. Liang, X. Chen, H. Tan. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 15(10) (2023) 2514. https://doi.org/10.3390/pharmaceutics15102514
Y. Guo, T. Yuan, Z. Xiao, P. Tang, Y. Xian, Y. Fan, X. Zhang. Hydrogels of collagen/chondroitin sulphate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine 23(9) (2012) 2267-79. https://doi.org/10.1007/s10856-012-4684-5
W. Xiao, J. He, J. Nichol, L. Wang, C. Hutson, B. Wang, Du, H. Fan. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia 7(6) (2011) 2384-93. https://doi.org/10.1016/j.actbio.2011.01.016
L. Pescosolido, T. Vermonden , J. Malda , R. Censi , W. Dhert , F. Alhaique , W. Hennink P. Matricardi. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomaterialia 7(4) (2011) 1627-3. https://doi.org/10.1016/j.actbio.2010.11.040
T. Chung , W. Chen , P. Tai , H. Lo, T. Wu. Roles of Silk Fibroin on Characteristics of Hyaluronic Acid/Silk Fibroin Hydrogels for Tissue Engineering of Nucleus Pulposus. Materials 13(12) (2020) 2750. https://doi.org/10.3390/ma13122750
D. Rennerfeldt, A. Renth, Z. Talata, Z. Talata, S. Gehrke, M. Detamore. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34(33) (2013) 8241-57. https://doi.org/10.1016/j.biomaterials.2013.07.052
L. Yiu-Jiuan, H. Feng-Chien, Chih-Wei, W. Te-Hsing, L. Hong-Ru. Poly(acrylic acid)-chitosan-silica hydrogels carrying platelet gels for bone defect repair. Journal of Materials Chemistry B 2 (2014) 8329. https://doi.org/10.1039/C4TB01356E
G. Ingavle, N. Dormer, S. Gehrke, M. Detamore. Using chondroitin sulphate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate. Journal of Materials Science: Materials in Medicine 23(1) (2012) 157-70. https://doi.org/10.1007/s10856-011-4499-9
J. Zhang, J. Wang, H. Zhang, J. Lin, Z. Ge, X. Zou. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Biomedical Materials 11(3) (2016) 035014. https://doi.org/10.1088/1748-6041/11/3/035014
A. Revete, A. Aparicio, B.A. Cisterna, J. Revete, L. Luis, E. Ibarra, E.A. Segura González, J. Molino, D. Reginensi. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. International Journal of Biomaterials 2022 (2022) 3606765. https://doi.org/10.1155%2F2022%2F3606765
X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu, X.Q. Zhang. Bioactive hydrogels for bone regeneration. Bioactive Materials 3(4) (2018) 401-17. https://doi.org/10.1016/j.bioactmat.2018.05.006
L. Qi, C. Zhang, B. Wang, J. Yin, S. Yan. Progress in Hydrogels for Skin Wound Repair. Macromolecular Bioscience 22(7) (2022) 2100475. https://doi.org/10.1002/mabi.202100475
Y. Liu, X. Zhang, C. Xiao, B. Liu. Engineered hydrogels for peripheral nerve repair. Materials Today Bio 20 (2023) 100668. https://doi.org/10.1016/j.mtbio.2023.100668
A. Dellaquila, E. Campodoni, A. Tampieri, M. Sandri. Overcoming the Design Challenge in 3D Biomimetic Hybrid Scaffolds for Bone and Osteochondral Regeneration by Factorial Design. Frontiers in Bioengineering and Biotechnology 8 (2020) 743. https://doi.org/10.3389/fbioe.2020.00743
M. Khanmohammadi, M. Jalessi, A. Asghari. Biomimetic hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. BMC Research Notes 15 (2022) 174. https://doi.org/10.1186/s13104-022-06060-w
P. Agrawal, A. Tiwari, S.K. Chowdhury, M. Vohra, A. Gour, N. Waghmare, U. Bhutani, S. Kamalnath, B. Sangwan, J. Rajput, R. Raj, N.P. Rajendran, A.V. Kamath, R. Haddadin, A. Chandru, V.S. Sangwan, T. Bhowmick. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 27(5) (2024) 109641. https://doi.org/10.1016/j.isci.2024.109641
S.H. Jeong, M. Kim, T.Y. Kim, H. Choi, S.K. Hahn. Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomaterials Science & Engineering 7(9) (2021) 4581-90. https://doi.org/10.1021/acsbiomaterials.1c00705
Z. Peng, H. Xue, X. Liu, S. Wang, G. Liu, X. Jia, Z. Zhu, M.J. Orvy, Y. Yang, Y. Wang, D. Zhang, L. Tong. Tough, adhesive biomimetic hyaluronic acid methacryloyl hydrogels for effective wound healing. Frontiers in Bioengineering and Biotechnology 11 (2023) 1222088. https://doi.org/10.3389/fbioe.2023.1222088
T. Khaliq, M. Sohail, M.U. Minhas, A. Mahmood, A. Munir, A.H.M. Qalawlus, N. Jabeen, M. Kousar, Z. Anwar. Hyaluronic acid/alginate-based biomimetic hydrogel membranes for accelerated diabetic wound repair. International Journal of Pharmaceutics 643 (2023) 123244. https://doi.org/10.1016/j.ijpharm.2023.123244
X. Wu, Y. Huo, Z. Ci, Y. Wang, W. Xu, B. Bai, J. Hao, G. Hu, M. Yu, W. Ren, Y. Zhang, Y. Hua, G. Zhou. Biomimetic porous hydrogel scaffolds enabled vascular ingrowth and osteogenic differentiation for vascularized tissue-engineered bone regeneration. Applied Materials Today 27 (2022) 101478. https://doi.org/10.1016/j.apmt.2022.101478
M. Song, H. Jang, J. Lee, J.H. Kim, S.H. Kim, K. Sun, Y. Park. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP, Biomaterials 35(8) (2014) 2436-45. https://doi.org/10.1016/j.biomaterials.2013.12.011
H. Wu, R. Zhang, B. Hu, Y. He, Y. Zhang, L. Cai, L. Wang, G. Wang, H. Hou, X. Qiu. A porous hydrogel scaffold mimicking the extracellular matrix with swim bladder derived collagen for renal tissue regeneration. Chinese Chemical Letters 32(7) (2021) 3940-7. https://doi.org/10.1016/j.cclet.2021.04.043
Y. Jin, W. Zhang, Y. Zhang, Y. Yang, Z. Fang, J. Song, Y. Qian, W.E. Yuan. Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. Biomaterials Advances 135 (2022) 212727. https://doi.org/10.1016/j.bioadv.2022.212727
L.P. Yan, J. Silva-Correia, V.P. Ribeiro, V. Miranda-Gonçalves, C. Correia. A. da Silva Morais, R.A. Sousa, R.M. Reis, A.L. Oliveira, J.M. Oliveira, R.L. Reis. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports 6 (2016) 31037. https://doi.org/10.1038/srep31037
W. Xia, G. Lai, Y. Li, C. Zeng, C. Sun, P. Zhang, G. Zhu, L. Li, L. Wu. Photo-crosslinked adhesive hydrogel loaded with extracellular vesicles promoting hemostasis and liver regeneration. Frontiers in Bioengineering and Biotechnology 11 (2023) 1170212. https://doi.org/10.3389/fbioe.2023.1170212
Q. Vallmajo-Martin, N. Broguiere, C. Millan, M. Zenobi-Wong, M. Ehrbar. PEG/HA Hybrid Hydrogels for Biologically and Mechanically Tailorable Bone Marrow Organoids. Advanced Functional Materials 30(48) (2020) 1910282. https://doi.org/10.1002/adfm.201910282
Z. Gan, X. Qin, H. Liu, J. Liu, J. Qin. Recent advances in defined hydrogels in organoid research. Bioactive Materials 28 (2023) 386-401. https://doi.org/10.1016/j.bioactmat.2023.06.004
L. Lei, Y. Bai, X. Qin, J. Liu, W. Huang, Q. Lv. Current Understanding of Hydrogel for Drug Release and Tissue Engineering. Gels 8 (2022) 301. https://doi.org/10.3390%2Fgels8050301
A. Bordbar-Khiabani, M. Gasik. Smart Hydrogels for Advanced Drug Delivery Systems. International Journal of Molecular Sciences 23 (2022) 3665. https://doi.org/10.3390/ijms23073665
J. Li, D. Moone. Designing hydrogels for controlled drug delivery. Nature reviews Materials 1 (2016) 16071. https://doi.org/10.1038/natrevmats.2016.71
A. Raeisi, F. Farjadin. Commercial hydrogel product for drug delivery based on route of administration. Frontiers in Chemistry 12 (2024) 1336717. https://doi.org/10.3389/fchem.2024.1336717
J. Qu, Y. Liang, M. Shi, B. Guo, Y. Gao, Z. Yin. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. International Journal of Biological Macromolecules 140 (2019) 255-264. https://doi.org/10.1016/j.ijbiomac.2019.08.120
A. George, P.A. Shah, P.S. Shrivastav. Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal 112 (2019) 722-735. https://doi.org/10.1016/j.eurpolymj.2018.10.042
N.S. Malik, M. Ahmad, M.U. Minhas, R. Tulain, K. Barkat, I. Khalid, Q. Khalid. Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation. Frontiers in Chemistry 4(8) (2020) 50. https://doi.org/10.3389/fchem.2020.00050
C.P. Fu, X.Y. Cai, S.L. Chen, H.W. Yu, Y. Fang, X.C. Feng, L.M. Zhang, C.Y. Li. Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery. Polymers 215(10) (2023) 2317. https://doi.org/10.3390/polym15102317
M. Puertas-Bartolomé, L. Benito-Garzón, S. Fung, J. Kohn, B. Vázquez-Lasa, J. San Román. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Materials Science and Engineering: C 105 (2019) 110040. https://doi.org/10.1016/j.msec.2019.110040
J. Zhou, J. Zheng, Y. Zhang, P. Zheng, T. Tang, J.K. Luo, H.J. Cui, R.R. Song, Y. Wang. Chitosan Hydrogel Delivery System Containing Herbal Compound Functions as a Potential Antineuroinflammatory Agent. ACS Omega 4(6) (2019) 10185-10191. https://doi.org/10.1021/acsomega.9b00971
G.R. Mahdavinia, H. Etemadi. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Materials Science and Engineering: C 45(250) (2014) 60. https://doi.org/10.1016/j.msec.2014.09.023
E. Bulut. Development and optimization of Fe3+-crosslinked sodium alginate methylcellulose semi-interpenetrating polymer network beads for controlled release of ibuprofen. International Journal of Biological Macromolecules 168(2) (2021) 823-833. https://doi.org/10.1016/j.ijbiomac.2020.11.147
Z. Zou, B. Zhang, X. Nie, Y. Cheng, Z. Hu, M. Liao, S. Li. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances 10(65) (2020) 39722-39730. https://doi.org/10.1039/D0RA04316H
K. Sellamuthu, S. Angappan. Design, development and characterization of interpenetrating polymer network hydrogel bead for controlled release of glipizide drug. Drug Development and Industrial Pharmacy 48(9) (2022) 491-501. https://doi.org/10.1080/03639045.2022.2130939
Y. Shin, D. Kim, Y. Hu, Y. Kim, I.K. Hong, M.S. Kim, S. Jung. pH-Responsive Succinoglycan-Carboxymethyl Cellulose Hydrogels with Highly Improved Mechanical Strength for Controlled Drug Delivery Systems. Polymers 13(18) (2021) 3197. https://doi.org/10.3390/polym13183197
S. Rai, R. Raychaudhuri, R. Kudarha, S. Mutalik, B. Vishalakshi, K.M. Usha. Bioderived cellulose fibre-guar gum grafted poly (N, N'-dimethylacrylamide) polymer network for controlled release of metformin hydrochloride. International Journal of Biological Macromolecules 253(3) (2023) 126882. https://doi.org/10.1016/j.ijbiomac.2023.126882
A. Biswas, S. Mondal, S.K. Das, A. Bose, S. Thomas, K. Ghosal, S. Roy, I. Provaznik. Development and Characterization of Natural Product Derived Macromolecules Based Interpenetrating Polymer Network for Therapeutic Drug Targeting. ACS Omega 6(43) (2021) 28699-28709. https://doi.org/10.1021/acsomega.1c03363
B. Farasati Far, M. Omrani, M.R. Naimi Jamal, S. Javanshir. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Communications Chemistry 6(28) (2023). https://doi.org/10.1038/s42004-023-00829-1
S.M.R. Dadfar, S. Pourmahdian, M.M. Tehranchi, S.M. Dadfar. Novel dual-responsive semi-interpenetrating polymer network hydrogels for controlled release of anticancer drugs. Journal of Biomedical Materials Research Part A 107(10) (2019) 2327-2339. https://doi.org/10.1002/jbm.a.36741
B. Wang, Y. Han, Q. Lin, H. Liu, C. Shen, K. Nan, H. Chen. Expression of concern: In vitro and in vivo evaluation of xanthan gum-succinic anhydride hydrogels for the ionic strength-sensitive release of antibacterial agents. Journal of Materials Chemistry B 11(36) (2023) 8819. https://doi.org/10.1039/C5TB02046H
F.J. Aangenendt, M.T.J.J.M. Punter, B.M. Mulder, P. van der Schoot, H.M. Wyss. Nonmonotonic swelling and compression dynamics of hydrogels in polymer solutions. Physical Review E 102(6-1) (2020) 062606. https://doi.org/10.1103/physreve.102.062606
C. Xu, G. Dai, Y. Hong. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomaterialia 95 (2019) 50-59. https://doi.org/10.1016/j.actbio.2019.05.032
J. Li, C. Wu, P. K. Chu, M. Gelinsky. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports 140(1) (2020) 100543. https://doi.org/10.1016/j.mser.2020.100543
A. Panwar, L.P. Tan. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6) (2016) 685. https://doi.org/10.3390/molecules21060685
P.S. Gungor-Ozkerim, I. Inci, Y.S. Zhang, A. Khademhosseini, M.R. Dokmeci. Bioinks for 3D bioprinting: An overview. Biomaterials Science 6(5) (2018) 915-946. https://doi.org/10.1039/c7bm00765e
S. Das, B. Basu. An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. Journal of the Indian Institute of Science 99(3) (2019) 405-428. https://doi.org/10.1007/s41745-019-00129-5
D.G. Tamay, N. Hasirci. Bioinks—materials used in printing cells in designed 3D forms. Journal of Biomaterials Science, Polymer Edition 32(8) (2021) 1072-1106. https://doi.org/10.1080/09205063.2021.1892470
H. Chopra, S. Kumar, I. Singh. Bioinks for 3D printing of Artificial Extracellular Matrices, in Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering, L. C. du Toit, P. Kumar, Y. E. Choonara, V. Pillay Eds., Elsevier, 2020, 1-37. https://doi.org/10.1016/B978-0-12-818471-4.00001-7
E. Axpe, M.L. Oyen. Applications of alginate-based bioinks in 3D bioprinting. International Journal of Molecular Sciences 17(12) (2016) 1976. https://doi.org/10.3390/ijms17121976
K. Dzobo, K.S.M.C. Motaung, A. Adesida. Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. International Journal of Molecular Sciences 20(18) (2019) 4628. https://doi.org/10.3390/ijms20184628
L. Tytgat, M.R. Kollert, L. Van Damme, H. Ottenvaere. H. Thienpont, G.N. Duva, P. Dubrel, S. Van Vierberghe, T.H. Quazi. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering. Macromolecular Bioscience 20(4) (2020) e1900364. https://doi.org/10.1002/mabi.201900364
L. Tytgat, L. Van Damme, M.D.P. Ortega Avalo, H. Declercq, H. Thiapoint, H. Otteveare, P. Blondel, P. Dubrel, Van Vierberghe. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. International Journal of Biological Macromolecules 140 (2019) 929-938. https://doi.org/10.1016/j.ijbiomac.2019.08.124
I. Gorroñogoitia, U. Urtaza, A. Zubiarrain-Laserna, A. Alonso-Varona, A.M. Zaldua. A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering. Polymers 14(2) (2022) 354. https://doi.org/10.3390/polym14020354
C. Antich, J. de Vicente, G. Jiménez, C. Chocarro, E. Carrillo, E. Montañez, P. Gálvez-Martin, J. Marchal. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomaterialia 106 (2020) 114-123. https://doi.org/10.1016/j.actbio.2020.01.046
B. de Melo, Y.A. Jodat, S. Mehrota, M.A. Calabrese, T. Kampermant, B.B. Manda, M.H.A. Santana, E. Aslberg, J. Leijten, S.R. Shin. 3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties. Advanced Functional Materials 29(51) (2019) 1906330. https://doi.org/10.1002/adfm.201906330
R. Schipani, S. Scheurer, R. Florentin, S.E. Critchley, D.J. Kelly. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication 12(3) (2020) 035011. https://doi.org/10.1088/1758-5090/ab8708
J. Guan, F.Z. Yuang, Z.M. Mao, H.L. Zhu, L. Lin, H.H. Chen, J.K. Yu. Fabrication of 3D-printed interpenetrating hydrogel scaffolds for promoting chondrogenic differentiation. Polymers 13(13) (2021) 2146. https://doi.org/10.3390/polym13132146
F. Gao, Z. Xu, Q. Liang, L. Peng, M. Wu, X. Zhao, X. Cui, X. Ruan, W. Liu. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds. Advanced Science 6(15) (2019) 1900867. https://doi.org/10.1002/advs.201900867
P. Maturavongsadit, L.K. Narayanan, P. Chansoria, R. Shirwaiker, S.R. Benhabbour. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS Applied Bio Materials 4(3) (2021) 2342-2353. https://doi.org/10.1021/acsabm.0c01108
N. Faramarzi, I.K. Yazdi, M. Nabavidia, A.A. Gema, A. Fanelli, A. Caizzone, L.M. Ptaskek, I. Sinha, A. Khademhosseini, N.J. Ruskin, A. Tamayol. Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Advanced Healthcare Materials 7(11) (2018) e1701347. https://doi.org/10.1002/adhm.201701347
M. He, Y. Hou. C. Zhu, M. He, Y. Jiang, G. Feng, Y. Liu, C. Chen, L. Zhang. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjugate Chemistry 32(8) (2021) 1915-1925. https://doi.org/10.1021/acs.bioconjchem.1c00322
K. Da Silva, P. Kumar, S.F. Van Vuuren, V. Pillay, Y.E. Choonara. Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. ACS Omega 6(33) (2021) 21368-21383. https://doi.org/10.1021/acsomega.1c01903
Q. Chen, X. Tian, J. Fan, H. Tong, Q. Ao, X. Wang. An interpenetrating alginate/gelatin network for three-dimensional (3D) cell cultures and organ bioprinting. Molecules 25(3) (2020) 756. https://doi.org/10.3390/molecules25030756
F. Xu, C. Dawson, M. Lamb, E. Mueller, E. Stefanek, M. Akbari, T. Hoare. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Frontiers in Bioengineering and Biotechnology 10 (2022) 849831. https://doi.org/10.3389%2Ffbioe.2022.849831
T.R. Hoare, D.S. Kohane. Hydrogels in drug delivery: Progress and challenges. Polymer 49(8) (2008) 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
H. Omidian, S.D. Chowdhury, R.L. Wilson. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 10 (2024) 238. https://doi.org/10.3390/gels10040238
留言 (0)