Identification and Manipulation of Spermatogonial Stem Cells with the Aim of Inducing Spermatogenesis in Vitro

Vlajković S, Cukuranović R, Bjelaković MD, Stefanović V. Possible therapeutic use of spermatogonial stem cells in the treatment of male infertility: a brief overview. ScientificWorldJournal. 2012;2012:374151. https://doi.org/10.1100/2012/374151.

Article  PubMed  PubMed Central  Google Scholar 

Wahyuni S, Siregar TN, Gholib G, et al. Identification and determination of the Seminiferous Epithelium stages and Spermatid Development in the Testis of Aceh Bull (Bos indicus). Vet Med Int. 2023;2023:8848185. https://doi.org/10.1155/2023/8848185. Published 2023 Sep 26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440:1190–203. https://doi.org/10.1038/nature04697.

Article  CAS  Google Scholar 

Wahyuni S, Siregar TN, Gholib G, Saputra A, Hafizuddin H, Sofyan H, Jalaluddin M, Adam M, Akmal M. (2023). Identification and Determination of the Seminiferous Epithelium Stages and Spermatid Development in the Testis of Aceh Bull (Bos indicus). Veterinary medicine international. 2023; 8848185. https://doi.org/10.1155/2023/8848185de.

Barros FRO, Giassetti MI, Visintin JA. Spermatogonial stem cells and animal transgenesis. In: Agbo EC, editor. Innovations in biotechnology. Rijeka: InTech; 2012. pp. 303–18. ISBN 978-953-51-0096-6.

Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92:577–95. https://doi.org/10.1152/physrev.00025.2011.

Article  CAS  PubMed  Google Scholar 

Clark JM, Eddy EM. Fine structural observations on the origin and associations of primordial germ cells of the mouse. Dev Biol. 1975;47:136–55. https://doi.org/10.1016/0012-1606(75)90269-9.

Article  CAS  PubMed  Google Scholar 

Byskov AG, Høyer PE. Embryology of mammalian gonads and ducts. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. 2nd ed. New York; 1994. pp. 487–540.

Google Scholar 

Bendel-Stenzel M, Anderson R, Heasman J, Wylie C. The origin and migration of primordial germ cells in the mouse. Semin Cell Dev Biol. 1998;9:393–400. https://doi.org/10.1006/scdb.1998.0204.

Article  CAS  PubMed  Google Scholar 

Das M, Gurusubramanian G, Roy VK. Immunolocalization of apelin receptor (APJ) in mouse seminiferous epithelium. J Experimental Zool Part Ecol Integr Physiol. 2024;341(4):450–7. https://doi.org/10.1002/jez.2801.

Article  CAS  Google Scholar 

Tohonen V, Ritzen EM, Nordqvist K, Wedell A. Male sex determination and prenatal differentiation of the testis. Endocr Dev. 2003;5:1–23. https://doi.org/10.1159/000069299.

Article  PubMed  Google Scholar 

Das M, Gurusubramanian G, Roy VK. Apelin receptor antagonist (ML221) treatment has a stimulatory effect on the testicular proliferation, antioxidants system and steroidogenesis in adult mice. Neuropeptides. 2023;101:102354. https://doi.org/10.1016/j.npep.2023.102354.

Article  CAS  PubMed  Google Scholar 

Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle. 2008;7:656–64. https://doi.org/10.4161/cc.7.5.5482.

Article  CAS  PubMed  Google Scholar 

Li H, MacLean G, Cameron D, Clagett-Dame M, Petkovich M. Cyp26b1 expression in murine sertoli cells is required to maintain male germ cells in an undifferentiated state during embryogenesis. PLoS ONE. 2009;4:e7501. https://doi.org/10.1371/journal.pone.0007501.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development. 2006;133:1495–505. https://doi.org/10.1242/dev.02316.

Article  CAS  PubMed  Google Scholar 

Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78:1225–33. https://doi.org/10.1016/s0015-0282(02)04345-5.

Article  PubMed  Google Scholar 

McCarrey J. Development of the germ cell. In: Desjardins C, Ewing L, editors. Cell and molecular biology of the testis. New York, NY: Oxford University Press; 1993. pp. 58–89.

Chapter  Google Scholar 

Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update. 2006;12:275–82. https://doi.org/10.1093/humupd/dmk001.

Article  CAS  PubMed  Google Scholar 

Franca LR, Becker-Silva SC, Crhiarini-Garcia H. The length of the cycle of seminiferous epitheliumin goats (Capra hircus). Tissue Cell. 1999;31:274–80.

Article  CAS  PubMed  Google Scholar 

Marret C, Durand P. Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix, and fetal calf serum on their survival and multiplication. Reprod Nut Dev. 2000;40:305–19. https://doi.org/10.1051/rnd:2000127.

Article  CAS  Google Scholar 

Dym M. Spermatogonial stem cells of the testis. Proc Natl Acad Sci USA. 1994;91:11287–9. https://doi.org/10.1073/pnas.91.24.11287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nihi F, Gomes MLM, Carvalho FAR, Reis AB, Martello R, Melo RCN, et al. Revisiting the human seminiferous epithelium cycle. Hum Reprod. 2017;32:1170–82. https://doi.org/10.1093/humrep/dex064.

Article  CAS  PubMed  Google Scholar 

Luo J, Megee S, Rathi R, Dobrinski I. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev. 2006;73:1531–40. https://doi.org/10.1002/mrd.20529.

Article  CAS  PubMed  Google Scholar 

Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 2005;279:114–24. https://doi.org/10.1007/978-1-61779-436-0_4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bucci LR, Brock WA, Johnson TS, Meistrich Ml. Isolation and biochemical studies of enriched populations of spermatogonia and early primary spermatocytes from rat testes. Bioi Reprod. 1986;34:195–206. https://doi.org/10.1095/biolreprod34.1.195.

Article  CAS  Google Scholar 

Russell L, Ettlin R, Sinha-Hikim A, Clegg E, Russell L, Ettlin R, et al. Histological and histopathological evaluation of the testis. 1st ed. Clearwater: Cache River; 1990.

Google Scholar 

Izadyar F, Spierenberg G, Creemers L, Ouden K, de Rooij DG. Isolation and purification of type a spermatogonia from the bovine testis. Reproduction. 2002;124:85–94. https://doi.org/10.1530/rep.0.1240085.

Article  CAS  PubMed  Google Scholar 

Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1663–78. https://doi.org/10.1098/rstb.2010.0026.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borjigin U, Davey R, Hutton K, Herrid M. Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod Fertil Dev. 2010;22:733–42. https://doi.org/10.1071/RD09237.

Article  CAS  PubMed  Google Scholar 

Cremades N, Bernabeu R, Barros A, Sousa M. In-vitro maturation of round spermatids using co-culture on Vero cells. Hum Reprod. 1999;14:1287–93. https://doi.org/10.1093/humrep/14.5.1287.

Article  CAS  PubMed  Google Scholar 

Kaul G, Kumar Sh, Kumari S. Enrichment of CD9 + spermatogonial stem cells from goat (Capra aegagrus hircus) testis using magnetic microbeads. Stem Cell Discov. 2012;2:92–9. https://doi.org/10.4236/scd.2012.23014.

Article  CAS  Google Scholar 

Kokkinaki M, Lee TL, He Z, Jiang J, Golestaneh N, Hofmann MC, et al. The molecular signature of spermatogonial stem cells in the 6-day-old mouse testis. Biol Reprod. 2009;80:707–17. https://doi.org/10.1095/biolreprod.108.073809.

Article  CAS 

留言 (0)

沒有登入
gif