Roelfsema, F., Boelen, A., Kalsbeek, A. & Fliers, E. Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best. Pract. Res. Clin. Endocrinol. Metab. 31, 487–503 (2017).
Refetoff, S. in Endotext (eds Feingold K. R. et al.) (MDText.com, 2000).
Pappa, T., Ferrara, A. M. & Refetoff, S. Inherited defects of thyroxine-binding proteins. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 735–747 (2015).
Article CAS PubMed Central Google Scholar
Groeneweg, S., van Geest, F. S., Peeters, R. P., Heuer, H. & Visser, W. E. Thyroid hormone transporters. Endocr. Rev. 41, bnz008 (2020).
Russo, S. C., Salas-Lucia, F. & Bianco, A. C. Deiodinases and the metabolic code for thyroid hormone action. Endocrinology 162, bqab059 (2021).
Article PubMed Central Google Scholar
Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).
Article PubMed Central Google Scholar
Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 14, 947–955 (2000).
Pihlajamaki, J. et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529 (2009).
Article CAS PubMed Central Google Scholar
Ohba, K. et al. Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice. Endocrinology 157, 1660–1672 (2016).
Article CAS PubMed Central Google Scholar
de Assis, L. V. M. et al. Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice. Sci. Rep. 14, 640 (2024).
Article PubMed Central Google Scholar
Anselmo, J. & Chaves, C. M. Physiologic significance of epigenetic regulation of thyroid hormone target gene expression. Eur. Thyroid. J. 9, 114–123 (2020).
Article CAS PubMed Central Google Scholar
Darras, V. M., Houbrechts, A. M. & Van Herck, S. L. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim. Biophys. Acta 1849, 130–141 (2015).
Rodd, C., Schwartz, H. L., Strait, K. A. & Oppenheimer, J. H. Ontogeny of hepatic nuclear triiodothyronine receptor isoforms in the rat. Endocrinology 131, 2559–2564 (1992).
Keijzer, R. et al. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. J. Mol. Endocrinol. 38, 523–535 (2007).
Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).
Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Transgenic targeting of a dominant negative corepressor to liver blocks basal repression by thyroid hormone receptor and increases cell proliferation. J. Biol. Chem. 276, 15066–15072 (2001).
Astapova, I. & Hollenberg, A. N. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim. Biophys. Acta 1830, 3876–3881 (2013).
Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).
Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).
Article CAS PubMed Central Google Scholar
Brtko, J. Thyroid hormone and thyroid hormone nuclear receptors: history and present state of art. Endocr. Regul. 55, 103–119 (2021).
Bhat, M. K., Parkison, C., McPhie, P., Liang, C. M. & Cheng, S. Y. Conformational changes of human β1 thyroid hormone receptor induced by binding of 3,3′,5-triiodo-L-thyronine. Biochem. Biophys. Res. Commun. 195, 385–392 (1993).
Astapova, I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J. Mol. Endocrinol. 56, 73–97 (2016).
Liu, Y., Xia, X., Fondell, J. D. & Yen, P. M. Thyroid hormone-regulated target genes have distinct patterns of coactivator recruitment and histone acetylation. Mol. Endocrinol. 20, 483–490 (2006).
Praestholm, S. M. et al. Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet. 16, e1008770 (2020).
Article CAS PubMed Central Google Scholar
Malik, S. et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors. Mol. Cell Biol. 24, 8244–8254 (2004).
Article CAS PubMed Central Google Scholar
Pandey, P. K. et al. Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol. Cell Biol. 25, 10695–10710 (2005).
Article CAS PubMed Central Google Scholar
Cordeiro, A., Souza, L. L., Einicker-Lamas, M. & Pazos-Moura, C. C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 216, R47–R57 (2013).
Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J. & Davis, F. B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275, 38032–38039 (2000).
Gionfra, F. et al. The role of thyroid hormones in hepatocyte proliferation and liver cancer. Front. Endocrinol. 10, 532 (2019).
Tang, Q., Zeng, M., Chen, L. & Fu, N. Targeting thyroid hormone/thyroid hormone receptor axis: an attractive therapy strategy in liver diseases. Front. Pharmacol. 13, 871100 (2022).
Article CAS PubMed Central Google Scholar
Sinha, R. A. & Yen, P. M. Metabolic messengers: thyroid hormones. Nat. Metab. 6, 639–650 (2024).
Article PubMed Central Google Scholar
Dittrich, R. et al. Thyroid hormone receptors and reproduction. J. Reprod. Immunol. 90, 58–66 (2011).
Selva, D. M. & Hammond, G. L. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4α. J. Mol. Endocrinol. 43, 19–27 (2009).
Shen, M. & Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015, 294278 (2015).
Article PubMed Central Google Scholar
Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).
Fonseca, T. L. et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc. Natl Acad. Sci. USA 112, 14018–14023 (2015).
Article CAS PubMed Central Google Scholar
Fonseca, T. L. et al. Hepatic inactivation of the type 2 deiodinase confers resistance to alcoholic liver steatosis. Alcohol. Clin. Exp. Res. 43, 1376–1383 (2019).
Article CAS PubMed Central Google Scholar
Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).
留言 (0)