Actions of thyroid hormones and thyromimetics on the liver

Roelfsema, F., Boelen, A., Kalsbeek, A. & Fliers, E. Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best. Pract. Res. Clin. Endocrinol. Metab. 31, 487–503 (2017).

Article  CAS  Google Scholar 

Refetoff, S. in Endotext (eds Feingold K. R. et al.) (MDText.com, 2000).

Pappa, T., Ferrara, A. M. & Refetoff, S. Inherited defects of thyroxine-binding proteins. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 735–747 (2015).

Article  CAS  PubMed Central  Google Scholar 

Groeneweg, S., van Geest, F. S., Peeters, R. P., Heuer, H. & Visser, W. E. Thyroid hormone transporters. Endocr. Rev. 41, bnz008 (2020).

Article  Google Scholar 

Russo, S. C., Salas-Lucia, F. & Bianco, A. C. Deiodinases and the metabolic code for thyroid hormone action. Endocrinology 162, bqab059 (2021).

Article  PubMed Central  Google Scholar 

Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).

Article  PubMed Central  Google Scholar 

Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 14, 947–955 (2000).

Article  CAS  Google Scholar 

Pihlajamaki, J. et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529 (2009).

Article  CAS  PubMed Central  Google Scholar 

Ohba, K. et al. Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice. Endocrinology 157, 1660–1672 (2016).

Article  CAS  PubMed Central  Google Scholar 

de Assis, L. V. M. et al. Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice. Sci. Rep. 14, 640 (2024).

Article  PubMed Central  Google Scholar 

Anselmo, J. & Chaves, C. M. Physiologic significance of epigenetic regulation of thyroid hormone target gene expression. Eur. Thyroid. J. 9, 114–123 (2020).

Article  CAS  PubMed Central  Google Scholar 

Darras, V. M., Houbrechts, A. M. & Van Herck, S. L. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim. Biophys. Acta 1849, 130–141 (2015).

Article  CAS  Google Scholar 

Rodd, C., Schwartz, H. L., Strait, K. A. & Oppenheimer, J. H. Ontogeny of hepatic nuclear triiodothyronine receptor isoforms in the rat. Endocrinology 131, 2559–2564 (1992).

Article  CAS  Google Scholar 

Keijzer, R. et al. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. J. Mol. Endocrinol. 38, 523–535 (2007).

Article  CAS  Google Scholar 

Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).

Article  CAS  Google Scholar 

Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Transgenic targeting of a dominant negative corepressor to liver blocks basal repression by thyroid hormone receptor and increases cell proliferation. J. Biol. Chem. 276, 15066–15072 (2001).

Article  CAS  Google Scholar 

Astapova, I. & Hollenberg, A. N. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim. Biophys. Acta 1830, 3876–3881 (2013).

Article  CAS  Google Scholar 

Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).

Article  CAS  Google Scholar 

Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

Article  CAS  PubMed Central  Google Scholar 

Brtko, J. Thyroid hormone and thyroid hormone nuclear receptors: history and present state of art. Endocr. Regul. 55, 103–119 (2021).

Article  Google Scholar 

Bhat, M. K., Parkison, C., McPhie, P., Liang, C. M. & Cheng, S. Y. Conformational changes of human β1 thyroid hormone receptor induced by binding of 3,3′,5-triiodo-L-thyronine. Biochem. Biophys. Res. Commun. 195, 385–392 (1993).

Article  CAS  Google Scholar 

Astapova, I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J. Mol. Endocrinol. 56, 73–97 (2016).

Article  Google Scholar 

Liu, Y., Xia, X., Fondell, J. D. & Yen, P. M. Thyroid hormone-regulated target genes have distinct patterns of coactivator recruitment and histone acetylation. Mol. Endocrinol. 20, 483–490 (2006).

Article  CAS  Google Scholar 

Praestholm, S. M. et al. Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet. 16, e1008770 (2020).

Article  CAS  PubMed Central  Google Scholar 

Malik, S. et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors. Mol. Cell Biol. 24, 8244–8254 (2004).

Article  CAS  PubMed Central  Google Scholar 

Pandey, P. K. et al. Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol. Cell Biol. 25, 10695–10710 (2005).

Article  CAS  PubMed Central  Google Scholar 

Cordeiro, A., Souza, L. L., Einicker-Lamas, M. & Pazos-Moura, C. C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 216, R47–R57 (2013).

Article  CAS  Google Scholar 

Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J. & Davis, F. B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275, 38032–38039 (2000).

Article  CAS  Google Scholar 

Gionfra, F. et al. The role of thyroid hormones in hepatocyte proliferation and liver cancer. Front. Endocrinol. 10, 532 (2019).

Article  Google Scholar 

Tang, Q., Zeng, M., Chen, L. & Fu, N. Targeting thyroid hormone/thyroid hormone receptor axis: an attractive therapy strategy in liver diseases. Front. Pharmacol. 13, 871100 (2022).

Article  CAS  PubMed Central  Google Scholar 

Sinha, R. A. & Yen, P. M. Metabolic messengers: thyroid hormones. Nat. Metab. 6, 639–650 (2024).

Article  PubMed Central  Google Scholar 

Dittrich, R. et al. Thyroid hormone receptors and reproduction. J. Reprod. Immunol. 90, 58–66 (2011).

Article  CAS  Google Scholar 

Selva, D. M. & Hammond, G. L. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4α. J. Mol. Endocrinol. 43, 19–27 (2009).

Article  CAS  Google Scholar 

Shen, M. & Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015, 294278 (2015).

Article  PubMed Central  Google Scholar 

Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).

Google Scholar 

Fonseca, T. L. et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc. Natl Acad. Sci. USA 112, 14018–14023 (2015).

Article  CAS  PubMed Central  Google Scholar 

Fonseca, T. L. et al. Hepatic inactivation of the type 2 deiodinase confers resistance to alcoholic liver steatosis. Alcohol. Clin. Exp. Res. 43, 1376–1383 (2019).

Article  CAS  PubMed Central  Google Scholar 

Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).

Article  CAS  PubMed Central 

留言 (0)

沒有登入
gif