Are females getting more fatigable as they age?

Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Simoes DCM, Thomas K, Howatson G, Hunter SK, Goodall S (2019) Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol 126(6):1701–1712. https://doi.org/10.1152/japplphysiol.01041.2018

Article  CAS  Google Scholar 

Bachasson D, Millet GY, Decorte N, Wuyam B, Levy P, Verges S (2013) Quadriceps function assessment using an incremental test and magnetic neurostimulation: a reliability study. J Electromyogr Kinesiol 23(3):649–658. https://doi.org/10.1016/j.jelekin.2012.11.011

Article  Google Scholar 

Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7(9):691–699. https://doi.org/10.1002/mus.880070902

Article  CAS  Google Scholar 

Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

Article  CAS  Google Scholar 

Brownstein CG, Twomey R, Temesi J, Medysky ME, Culos-Reed SN, Millet GY (2022) Mechanisms of neuromuscular fatigability in people with cancer-related fatigue. Med Sci Sports Exerc 54(8):1355–1363. https://doi.org/10.1249/MSS.0000000000002919

Article  CAS  Google Scholar 

Callahan DM, Foulis SA, Kent-Braun JA (2009) Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode: knee extensor fatigue. Muscle Nerve 39(5):692–702. https://doi.org/10.1002/mus.21278

Article  PubMed Central  Google Scholar 

Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36(2):174–182. https://doi.org/10.1136/jnnp.36.2.174

Article  PubMed Central  CAS  Google Scholar 

Coates KD, Aboodarda SJ, Krüger RL, Martin T, Metz LM, Jarvis SE, Millet GY (2020) Multiple sclerosis-related fatigue: The role of impaired corticospinal responses and heightened exercise fatigability. J Neurophysiol 124(4):1131–1143. https://doi.org/10.1152/jn.00165.2020

Article  CAS  Google Scholar 

Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95(4):1717–1727. https://doi.org/10.1152/japplphysiol.00347.2003

Article  CAS  Google Scholar 

Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY (2018) An Innovative ergometer to measure neuromuscular fatigue immediately after cycling. Med Sci Sports Exerc 50(2):375–387. https://doi.org/10.1249/MSS.0000000000001427

Article  Google Scholar 

Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6

Article  PubMed  CAS  Google Scholar 

Harridge SDR, Lazarus NR (2017) Physical activity, aging, and physiological function. Physiology 32(2):152–161. https://doi.org/10.1152/physiol.00029.2016

Article  Google Scholar 

Hunter SK (2009) Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev 37(3):113–122. https://doi.org/10.1097/JES.0b013e3181aa63e2

Article  PubMed Central  Google Scholar 

Hunter SK (2016) The relevance of sex differences in performance fatigability. Med Sci Sports Exerc 48(11):2247–2256. https://doi.org/10.1249/MSS.0000000000000928

Article  PubMed Central  Google Scholar 

Hunter SK, Critchlow A, Enoka RM (2004) Influence of aging on sex differences in muscle fatigability. J Appl Physiol 97(5):1723–1732. https://doi.org/10.1152/japplphysiol.00460.2004

Article  Google Scholar 

Hunter SK, Pereira HM, Keenan KG (2016) The aging neuromuscular system and motor performance. J Appl Physiol 121(4):982–995. https://doi.org/10.1152/japplphysiol.00475.2016

Article  PubMed Central  CAS  Google Scholar 

Hureau TJ, Hucteau E, Massamba A, Mallard J, Ducrocq GP (2021) Identifying sex differences in neuromuscular fatigue: the challenge of normalizing exercise intensity and interpreting the results between populations. J Physiol 599(11):2769–2991. https://doi.org/10.1113/JP281755

Article  Google Scholar 

Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89(1):81–88. https://doi.org/10.1152/jappl.2000.89.1.81

Article  CAS  Google Scholar 

Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY (2014) Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. PLoS One 9(2):e89157. https://doi.org/10.1371/journal.pone.0089157

Article  PubMed Central  CAS  Google Scholar 

Justice JN, Mani D, Pierpoint LA, Enoka RM (2014) Fatigability of the dorsiflexors and associations among multiple domains of motor function in young and old adults. Exp Gerontol 55:92–101. https://doi.org/10.1016/j.exger.2014.03.018

Article  PubMed Central  Google Scholar 

Kent-Braun JA (2009) Skeletal muscle fatigue in old age: whose advantage? Exerc Sport Sci Rev 37(1):3–9. https://doi.org/10.1097/JES.0b013e318190ea2e

Article  PubMed Central  Google Scholar 

Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93(5):1813–1823. https://doi.org/10.1152/japplphysiol.00091.2002

Article  CAS  Google Scholar 

Krüger RL, Aboodarda SJ, Samozino P, Rice CL, Millet GY (2018) Isometric versus dynamic measurements of fatigue: does age matter? a meta-analysis. Med Sci Sports Exerc 50(10):2132–2144. https://doi.org/10.1249/MSS.0000000000001666

Article  Google Scholar 

Krüger RL, Aboodarda SJ, Jaimes LM, Vaz MA, Samozino P, Millet GY (2020) Age-related neuromuscular fatigue and recovery after cycling: measurements in isometric and dynamic modes. Exp Gerontol 133:110877. https://doi.org/10.1016/j.exger.2020.110877

Article  Google Scholar 

Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS (2014) In vivo evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Clin Sci 126(8):581–592. https://doi.org/10.1042/CS20130442

Article  CAS  Google Scholar 

Lopes TR, Pereira HM, Silva BM (2022) Perceived exertion: revisiting the history and updating the neurophysiology and the practical applications. Int J Environ Res Public Health 19(21):14439. https://doi.org/10.3390/ijerph192114439

Article  PubMed Central  Google Scholar 

Mota JA, Kwon DP, Kennedy M, Sobolewski EJ, Kim Y, Gonzales JU, Stock MS (2020) Compensatory adjustments in motor unit behavior during fatigue differ for younger versus older men. Aging Clin Exp Res 32(11):2259–2269. https://doi.org/10.1007/s40520-019-01438-6

Article  Google Scholar 

Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH (2022) Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol 133(4):850–866. https://doi.org/10.1152/japplphysiol.00319.2022

Article  Google Scholar 

Royer N, Brownstein CG, Kennouche D, Espeit L, Teston A, Boutet C, Féasson L, Camdessanché J-P, Millet GY (2023) A Comprehensive evaluation of multiple sclerosis-related fatigue with a special focus on fatigability. Med Sci Sports Exerc 55(11):2002–2013. https://doi.org/10.1249/MSS.0000000000003233

Article  Google Scholar 

Rozand V, Senefeld JW, Hassanlouei H, Hunter SK (2017) Voluntary activation and variability during maximal dynamic contractions with aging. Eur J Appl Physiol 117(12):2493–2507. https://doi.org/10.1007/s00421-017-3737-3

Article  PubMed Central  Google Scholar 

Senefeld J, Yoon T, Hunter SK (2017) Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Exp Gerontol 87:74–83. https://doi.org/10.1016/j.exger.2016.10.008

Article  Google Scholar 

Souron R, Voirin A, Kennouche D, Espeit L, Millet GY, Rupp T, Lapole T (2020) Task failure during sustained low-intensity contraction is not associated with a critical amount of central fatigue. Scand J Med Sci Sports 30(12):2329–2341. https://doi.org/10.1111/sms.13815

Article  Google Scholar 

Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350. https://doi.org/10.1152/jappl.1998.84.1.344

Article  CAS  Google Scholar 

Sundberg CW, Kuplic A, Hassanlouei H, Hunter SK (2018) Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults. J Appl Physiol 125(1):146–158. https://doi.org/10.1152/japplphysiol.01141.2017

留言 (0)

沒有登入
gif