The effect of ischemic preconditioning on physical fitness and performance: a meta-analysis in healthy adults

Adanali G, Ozer K, Siemionow M (2002) Early and late effects of ischemic preconditioning on microcirculation of skeletal muscle flaps. Plast Reconstr Surg 109:1344–1351

Article  PubMed  Google Scholar 

Aggarwal S, Randhawa PK, Singh N, Jaggi AS (2017) Role of ATP-sensitive potassium channels in remote ischemic preconditioning induced tissue protection. J Cardiovasc Pharmacol Ther 22:467–475. https://doi.org/10.1177/1074248416687873

Article  CAS  PubMed  Google Scholar 

Arazi H, Eghbali E (2021) Possible effects of beetroot supplementation on physical performance through metabolic, neuroendocrine, and antioxidant mechanisms: a narrative review of the literature. Front Nutr 8:660150. https://doi.org/10.3389/fnut.2021.660150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen D (2012) Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44:2084–2089. https://doi.org/10.1249/MSS.0b013e318262cb17

Article  CAS  PubMed  Google Scholar 

Carvalho L, Barroso R (2019) Ischemic preconditioning improves strength endurance performance. J Strength Cond Res 33:3332–3337. https://doi.org/10.1519/JSC.0000000000002846

Article  PubMed  Google Scholar 

Cheng C, Kuo Y, Hsu W, Chen C, Pan C (2021) Local and remote ischemic preconditioning improves sprint interval exercise performance in team sport athletes. Int J Environ Res Public Health 18:10653

Article  PubMed  PubMed Central  Google Scholar 

Cocking S, Wilson MG, Nichols D, Cable NT, Green DJ, Thijssen D, Jones H (2018) Is there an optimal ischemic-preconditioning dose to improve cycling performance? Int J Sports Physiol Perform 13:274–282. https://doi.org/10.1123/ijspp.2017-0114

Article  PubMed  Google Scholar 

Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109

Article  CAS  PubMed  Google Scholar 

Cruz RSDO, De Aguiar RA, Turnes T, Pereira KL, Caputo F (2015) Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol 119:961–967

Article  CAS  PubMed  Google Scholar 

D’Avila V, de Sousa NB, de Sousa FB, Guillo LA (2008) Evaluation of the production of nitric oxide in mice, submitted to aerobic and anaerobic exercises. Revista Brasileira De Ciencias Farmaceuticas 44:755–761

Google Scholar 

de Oliveira CRS, de Aguiar RA, Turnes T, Salvador AF, Caputo F (2016) Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab 41:825–831. https://doi.org/10.1139/apnm-2015-0646

Article  CAS  Google Scholar 

Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728. https://doi.org/10.1007/s00421-017-3795-6

Article  CAS  PubMed  Google Scholar 

Ferreira TN, Sabino-Carvalho JL, Lopes TR, Ribeiro IC, Succi JE, da Silva AC, Silva BM (2016) Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exercise 48:1967–1975. https://doi.org/10.1249/MSS.0000000000000977

Article  Google Scholar 

French D (2016) Adaptations to Anaerobic Training Programs. In: GG H and NT T (ed) Essentials of Strength Training and Conditioning, 4rd edn. Human Kinetics, Champaign, IL, pp 124–129

Gibson N, White J, Neish M, Murray A (2013) Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform 8:671–676. https://doi.org/10.1123/ijspp.8.6.671

Article  PubMed  Google Scholar 

Gibson N, Mahony B, Tracey C, Fawkner S, Murray A (2015) Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci 33:1182–1188. https://doi.org/10.1080/02640414.2014.988741

Article  PubMed  Google Scholar 

Gonzalez AM, Townsend JR, Pinzone AG, Hoffman JR (2023) Supplementation with nitric oxide precursors for strength performance: a review of the current literature. Nutrients 15:660. https://doi.org/10.3390/nu15030660

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin PJ, Hughes L, Gissane C, Patterson SD (2019) Effects of local versus remote ischemic preconditioning on repeated sprint running performance. J Sports Med Phys Fitness 59: 187–194. https://doi.org/10.23736/S0022-4707.18.08400-1

Gurel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, Zuurbier CJ (2009) Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol 106:1909–1916

Article  CAS  PubMed  Google Scholar 

Gurke L, Marx A (1996) Ischemic preconditioning improves post-ischemic skeletal muscle function. Am Surg 62

Han HG, Wang ZW, Zhang NB, Zhu HY (2008) Role of nitric oxide during early phase myocardial ischemic preconditioning in rats. Chin Med J 121:1210–1214. https://doi.org/10.1097/00029330-200807010-00011

Article  CAS  PubMed  Google Scholar 

Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci 92:4666–4670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ-British Med J 327:557–560

Article  Google Scholar 

Ishida T, Yarimizu K, Gute DC, Korthuis RJ (1997) Mechanisms of ischemic preconditioning. Shock 8:86–94

Article  CAS  PubMed  Google Scholar 

Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Oh P, Green R (2023) Effects of high-intensity interval training protocols on blood lactate levels and cognition in healthy adults: systematic review and meta-regression. Sports Med 53:977–991

Article  PubMed  Google Scholar 

Jeffries O, Waldron M, Pattison JR, Patterson SD (2018) Enhanced local skeletal muscle oxidative capacity and microvascular blood flow following 7-day ischemic preconditioning in healthy humans. Front Physiol 9:369593. https://doi.org/10.3389/fphys.2018.00463

Article  Google Scholar 

Jeffries O, Evans DT, Waldron M, Coussens A, Patterson SD (2019) Seven-day ischaemic preconditioning improves muscle efficiency during cycling. J Sports Sci 37:2798–2805. https://doi.org/10.1080/02640414.2019.1664537

Article  PubMed  Google Scholar 

JPT H, J T, J C, M C, Li T P M, VA W (2019) Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Chichester (UK)

Kilding AE, Sequeira GM, Wood MR (2018) Effects of ischemic preconditioning on economy, VO(2) kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 118:2541–2549. https://doi.org/10.1007/s00421-018-3979-8

Article  CAS  PubMed  Google Scholar 

Klissouras V (1971) Heritability of adaptive variation. J Appl Physiol 31:338–344

Article  CAS  PubMed  Google Scholar 

Kohin S, Stary CM, Howlett RA, Hogan MC (2001) Preconditioning improves function and recovery of single muscle fibers during severe hypoxia and reoxygenation. Am J Physiol Cell Physiol 281:C142–C146

Article  CAS  PubMed  Google Scholar 

Lalonde F, Curnier DY (2015) Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res 29:80–85. https://doi.org/10.1519/JSC.0000000000000609

Article  PubMed  Google Scholar 

Lee HT, Lineaweaver WC (1996) Protection against ischemic-reperfusion injury of skeletal muscle: Role of ischemic preconditioning and adenosine pretreatment. J Reconstr Microsurg 12:383–388. https://doi.org/10.1055/s-2007-1006502

Article  CAS  PubMed  Google Scholar 

Lee S, Choi Y, Jeong E, Park J, Kim J, Tanaka M, Choi J (2023) Physiological significance of elevated levels of lactate by exercise training in the brain and body. J Biosci Bioeng 135:167–175. https://doi.org/10.1016/j.jbiosc.2022.12.001

Article  CAS  PubMed  Google Scholar 

Lim AT, Lim J, Girard O, Aziz AR, Tan F, Ihsan M (2023) Effect of ischemic preconditioning on badminton-specific endurance and subsequent changes in physical performance. Sci Sports 38:101–102.

留言 (0)

沒有登入
gif