Adanali G, Ozer K, Siemionow M (2002) Early and late effects of ischemic preconditioning on microcirculation of skeletal muscle flaps. Plast Reconstr Surg 109:1344–1351
Aggarwal S, Randhawa PK, Singh N, Jaggi AS (2017) Role of ATP-sensitive potassium channels in remote ischemic preconditioning induced tissue protection. J Cardiovasc Pharmacol Ther 22:467–475. https://doi.org/10.1177/1074248416687873
Article CAS PubMed Google Scholar
Arazi H, Eghbali E (2021) Possible effects of beetroot supplementation on physical performance through metabolic, neuroendocrine, and antioxidant mechanisms: a narrative review of the literature. Front Nutr 8:660150. https://doi.org/10.3389/fnut.2021.660150
Article CAS PubMed PubMed Central Google Scholar
Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen D (2012) Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44:2084–2089. https://doi.org/10.1249/MSS.0b013e318262cb17
Article CAS PubMed Google Scholar
Carvalho L, Barroso R (2019) Ischemic preconditioning improves strength endurance performance. J Strength Cond Res 33:3332–3337. https://doi.org/10.1519/JSC.0000000000002846
Cheng C, Kuo Y, Hsu W, Chen C, Pan C (2021) Local and remote ischemic preconditioning improves sprint interval exercise performance in team sport athletes. Int J Environ Res Public Health 18:10653
Article PubMed PubMed Central Google Scholar
Cocking S, Wilson MG, Nichols D, Cable NT, Green DJ, Thijssen D, Jones H (2018) Is there an optimal ischemic-preconditioning dose to improve cycling performance? Int J Sports Physiol Perform 13:274–282. https://doi.org/10.1123/ijspp.2017-0114
Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109
Article CAS PubMed Google Scholar
Cruz RSDO, De Aguiar RA, Turnes T, Pereira KL, Caputo F (2015) Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol 119:961–967
Article CAS PubMed Google Scholar
D’Avila V, de Sousa NB, de Sousa FB, Guillo LA (2008) Evaluation of the production of nitric oxide in mice, submitted to aerobic and anaerobic exercises. Revista Brasileira De Ciencias Farmaceuticas 44:755–761
de Oliveira CRS, de Aguiar RA, Turnes T, Salvador AF, Caputo F (2016) Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab 41:825–831. https://doi.org/10.1139/apnm-2015-0646
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728. https://doi.org/10.1007/s00421-017-3795-6
Article CAS PubMed Google Scholar
Ferreira TN, Sabino-Carvalho JL, Lopes TR, Ribeiro IC, Succi JE, da Silva AC, Silva BM (2016) Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exercise 48:1967–1975. https://doi.org/10.1249/MSS.0000000000000977
French D (2016) Adaptations to Anaerobic Training Programs. In: GG H and NT T (ed) Essentials of Strength Training and Conditioning, 4rd edn. Human Kinetics, Champaign, IL, pp 124–129
Gibson N, White J, Neish M, Murray A (2013) Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. Int J Sports Physiol Perform 8:671–676. https://doi.org/10.1123/ijspp.8.6.671
Gibson N, Mahony B, Tracey C, Fawkner S, Murray A (2015) Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. J Sports Sci 33:1182–1188. https://doi.org/10.1080/02640414.2014.988741
Gonzalez AM, Townsend JR, Pinzone AG, Hoffman JR (2023) Supplementation with nitric oxide precursors for strength performance: a review of the current literature. Nutrients 15:660. https://doi.org/10.3390/nu15030660
Article CAS PubMed PubMed Central Google Scholar
Griffin PJ, Hughes L, Gissane C, Patterson SD (2019) Effects of local versus remote ischemic preconditioning on repeated sprint running performance. J Sports Med Phys Fitness 59: 187–194. https://doi.org/10.23736/S0022-4707.18.08400-1
Gurel E, Smeele KM, Eerbeek O, Koeman A, Demirci C, Hollmann MW, Zuurbier CJ (2009) Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia-reperfusion. J Appl Physiol 106:1909–1916
Article CAS PubMed Google Scholar
Gurke L, Marx A (1996) Ischemic preconditioning improves post-ischemic skeletal muscle function. Am Surg 62
Han HG, Wang ZW, Zhang NB, Zhu HY (2008) Role of nitric oxide during early phase myocardial ischemic preconditioning in rats. Chin Med J 121:1210–1214. https://doi.org/10.1097/00029330-200807010-00011
Article CAS PubMed Google Scholar
Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci 92:4666–4670
Article CAS PubMed PubMed Central Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ-British Med J 327:557–560
Ishida T, Yarimizu K, Gute DC, Korthuis RJ (1997) Mechanisms of ischemic preconditioning. Shock 8:86–94
Article CAS PubMed Google Scholar
Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Oh P, Green R (2023) Effects of high-intensity interval training protocols on blood lactate levels and cognition in healthy adults: systematic review and meta-regression. Sports Med 53:977–991
Jeffries O, Waldron M, Pattison JR, Patterson SD (2018) Enhanced local skeletal muscle oxidative capacity and microvascular blood flow following 7-day ischemic preconditioning in healthy humans. Front Physiol 9:369593. https://doi.org/10.3389/fphys.2018.00463
Jeffries O, Evans DT, Waldron M, Coussens A, Patterson SD (2019) Seven-day ischaemic preconditioning improves muscle efficiency during cycling. J Sports Sci 37:2798–2805. https://doi.org/10.1080/02640414.2019.1664537
JPT H, J T, J C, M C, Li T P M, VA W (2019) Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons, Chichester (UK)
Kilding AE, Sequeira GM, Wood MR (2018) Effects of ischemic preconditioning on economy, VO(2) kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 118:2541–2549. https://doi.org/10.1007/s00421-018-3979-8
Article CAS PubMed Google Scholar
Klissouras V (1971) Heritability of adaptive variation. J Appl Physiol 31:338–344
Article CAS PubMed Google Scholar
Kohin S, Stary CM, Howlett RA, Hogan MC (2001) Preconditioning improves function and recovery of single muscle fibers during severe hypoxia and reoxygenation. Am J Physiol Cell Physiol 281:C142–C146
Article CAS PubMed Google Scholar
Lalonde F, Curnier DY (2015) Can anaerobic performance be improved by remote ischemic preconditioning? J Strength Cond Res 29:80–85. https://doi.org/10.1519/JSC.0000000000000609
Lee HT, Lineaweaver WC (1996) Protection against ischemic-reperfusion injury of skeletal muscle: Role of ischemic preconditioning and adenosine pretreatment. J Reconstr Microsurg 12:383–388. https://doi.org/10.1055/s-2007-1006502
Article CAS PubMed Google Scholar
Lee S, Choi Y, Jeong E, Park J, Kim J, Tanaka M, Choi J (2023) Physiological significance of elevated levels of lactate by exercise training in the brain and body. J Biosci Bioeng 135:167–175. https://doi.org/10.1016/j.jbiosc.2022.12.001
Article CAS PubMed Google Scholar
Lim AT, Lim J, Girard O, Aziz AR, Tan F, Ihsan M (2023) Effect of ischemic preconditioning on badminton-specific endurance and subsequent changes in physical performance. Sci Sports 38:101–102.
留言 (0)