Role of joint interactions in upper limb joint movements: a disability simulation study using wearable inertial sensors for 3D motion capture

Kaji R. Global burden of neurological diseases highlights stroke. Nat Rev Neurol. 2019;36(7):371–2.

Article  Google Scholar 

Andrews AW, Bohannon RW. Decreased shoulder range of motion on paretic side after stroke. Phy Ther. 1989;69(9):768–72.

Article  CAS  Google Scholar 

Beebe JA, Lang CE. Active range of motion predicts upper extremity function 3 months after stroke. Stroke. 2009;40(5):1772–9.

Article  PubMed  PubMed Central  Google Scholar 

Lang CE, Bland MD, Bailey RR, Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104–15.

Article  PubMed  Google Scholar 

Lang CE, Beebe JA. Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair. 2007;21(3):279–91.

Article  PubMed  Google Scholar 

Raghavan P. Upper limb motor impairment after stroke. Phy Med Rehabil Clin. 2015;26(4):599–610.

Article  Google Scholar 

Flower A, Burns MK, Bottsford-Miller NA. Meta-analysis of disability simulation research. Remed Spec Educ. 2007;28(2):72–9.

Article  Google Scholar 

Cooper JE, Shwedyk E, Quanbury AO, Miller J, Hildebrand D. Elbow joint restriction: effect on functional upper limb motion during performance of three feeding activities. Arch Phys Med Rehabil. 1993;74(8):805–9.

Article  PubMed  CAS  Google Scholar 

Bland MD, Beebe JA, Hardwick DD, Lang CE. Restricted active range of motion at the elbow, forearm, wrist, or fingers decreases hand function. J Hand Ther. 2008;21(3):268–75.

Article  PubMed  Google Scholar 

Adams BD, Grosland NM, Murphy DM, McCullough M. Impact of impaired wrist motion on hand and upper-extremity performance. J Hand Surg. 2003;28(6):898–903.

Article  Google Scholar 

Bernstein NA. The Coordination and Regulation of Movements. London: Pergamon Press; 1967.

Google Scholar 

Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.

Article  PubMed  CAS  Google Scholar 

Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics. Exp Brain Res. 2000;131(3):305–19.

Article  PubMed  CAS  Google Scholar 

Ghez C, Gordon J, Ghilardi MF. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol. 1995;73(1):361–72.

Article  PubMed  CAS  Google Scholar 

Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73(2):820–35.

Article  PubMed  CAS  Google Scholar 

Yahya M, Shah JA, Kadir KA, Yusof ZM, Khan S, Warsi A. Motion capture sensing techniques used in human upper limb motion: a review. Sens Rev. 2019;39(4):504–11.

Article  Google Scholar 

Doriot N, Wang X. Effects of age and gender on maximum voluntary range of motion of the upper body joints. Ergonomics. 2006;49(3):269–81.

Article  PubMed  Google Scholar 

Nakatake J, Totoribe K, Chosa E, Yamako G, Miyazaki S. Influence of gender differences on range of motion and joint angles during eating in young, healthy Japanese adults. Prog Rehabil Med. 2017;2:20170011. https://doi.org/10.2490/prm.20170011.

Article  PubMed  PubMed Central  Google Scholar 

Gajdosik RL, Bohannon RW. Clinical measurement of range of motion: review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67(12):1867–72.

Article  PubMed  CAS  Google Scholar 

de Winter AF, Heemskerk MA, Terwee CB. Inter-observer reproducibility of measurements of range of motion in patients with shoulder pain using a digital inclinometer. BMC Musculoskelet Disord. 2004;5:18. https://doi.org/10.1186/1471-2474-5-18.

Article  PubMed  PubMed Central  Google Scholar 

Blonna D, Zarkadas PC, Fitzsimmons JS, O’Driscoll SW. Accuracy and inter-observer reliability of visual estimation compared to clinical goniometry of the elbow. Knee Surg Sports Traumatol Arthrosc. 2012;20(7):1378–85.

Article  PubMed  Google Scholar 

Rajkumar A, Vulpi F, Bethi SR, Raghavan P, Kapila V. Usability study of wearable inertial sensors for exergames (WISE) for movement assessment and exercise. mHealth. 2021;7:4. https://doi.org/10.21037/mhealth-19-199.

Article  PubMed  PubMed Central  Google Scholar 

Gates DH, Walters LS, Cowley J, Wilken JM, Resnik L. Range of motion requirements for upper-limb activities of daily living. Am J Occup Ther. 2016; 70(1): 7001350010p1–10, https://doi.org/10.5014/ajot.2016.015487.

Rajkumar A, Vulpi F, Bethi SR, Wazir HK, Raghavan P, Kapila V. Wearable inertial sensors for range of motion assessment. IEEE Sens J. 2019;20(7):3777–87.

Article  PubMed  PubMed Central  Google Scholar 

Lin Z, Xiong Y, Dai H, Xia X, An experimental performance evaluation of the orientation accuracy of four nine–axis MEMS motion sensors. In: Proc Int Conf Enterprise Syst. 2017. pp. 185–9.

Matsumoto H, Ueki M, Uehara K, Noma H, Nozawa N, Osaki M, et al. Comparison of healthcare workers transferring patients using either conventional or robotic wheelchairs: kinematic, electromyographic, and electrocardiographic analyses. J Healthc Eng. 2016;2016:5963432. https://doi.org/10.1155/2016/5963432.

Article  PubMed  PubMed Central  Google Scholar 

Digo E, Gastaldi L, Antonelli M, Pastorelli S, Cereatti A, Caruso M. Real-time estimation of upper limbs kinematics with IMUs during typical industrial gestures. In: Proc Int Conf Indus 4.0 Smart Manuf, Procedia Comput Sci. 2022; 200: pp. 1041–7, https://doi.org/10.1016/j.procs.2022.01.303.

Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981–92.

Article  PubMed  CAS  Google Scholar 

Bethi SR, RajKumar A, Vulpi F, Raghavan P, Kapila V. Wearable inertial sensors for exergames and rehabilitation. In: Proc IEEE Int Conf Eng Med Biol Soc. 2020. pp. 4579–82.

Kronthaler F, Zöllner S. Data analysis with Rstudio. Berlin/Heidelberg: Springer; 2021.

Book  Google Scholar 

Das KR, Imon AHMR. A brief review of tests for normality. Am J Theor and Appl Stat. 2016;5(1):5–12.

Article  Google Scholar 

Glass GV. Testing homogeneity of variances. Am Educ Res J. 1966;3(3):187–90.

Article  Google Scholar 

Pagano RR. Understanding Statistics in the Behavioral Sciences. Belmont, CA: Wadsworth Cengage Learning; 2009. pp. 382–406.

Blanca MJ, Alarcón R, Arnau J, Bono R, Bendayan R. Non-normal data: Is ANOVA still a valid option? Psicothema. 2017;29(4):552–7.

PubMed  Google Scholar 

Driscoll WC. Robustness of the ANOVA and Tukey-Kramer statistical tests. Comput Ind Eng. 1996;31(1–2):265–8.

Article  Google Scholar 

Gill H, Gustafsson L, Hawcroft L, McKenna K. Shoulder joint range of motion in healthy adults aged 20 to 49 years. Br J Occup Ther. 2006;69(12):556–61.

Article  Google Scholar 

Gill TK, Shanahan EM, Tucker GR, Buchbinder R, Hill CL. Shoulder range of movement in the general population: age and gender stratified normative data using a community-based cohort. BMC Musculoskelet Disord. 2020;21:676. https://doi.org/10.1186/s12891-020-03665-9.

Article  PubMed  PubMed Central  Google Scholar 

Lawry GV, Grigoriadis E. The elbow. In: Fam’s Musculoskeletal Examination and Joint Injection Techniques. Philadelphia, PA: Mosby Elsevier; 2010. pp. 21–8.

McGill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat. 1978;32(1):12–6.

Article  Google Scholar 

Gribble PL, Ostry DJ. Compensation for interaction torques during single-and multijoint limb movement. J Neurophysiol. 1999;82(5):2310–26.

Article  PubMed  CAS  Google Scholar 

Hirashima M, Kudo K, Watarai K, Ohtsuki T. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players. J Neurophysiol. 2007;97(1):680–91.

Article  PubMed 

留言 (0)

沒有登入
gif