Shah PK, Gher JM. Human rights approaches to reducing infertility. Int J Gynaecol Obstet. 2023;162(1):368–74.
De Geyter C, Wyns C, Calhaz-Jorge C, de Mouzon J, Ferraretti AP, Kupka M, et al. 20 years of the European IVF-monitoring Consortium registry: what have we learned? A comparison with registries from two other regions. Hum Reprod. 2020;35(12):2832–49.
Article PubMed Central PubMed Google Scholar
Villani MT, Morini D, Spaggiari G, Falbo AI, Melli B, La Sala GB, et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022;10(2):310–21.
Chu KY, Nassau DE, Arora H, Lokeshwar SD, Madhusoodanan V, Ramasamy R. Artificial intelligence in reproductive urology. Curr Urol Rep. 2019;20(9):52.
Louis CM, Erwin A, Handayani N, Polim AA, Boediono A, Sini I. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021;38(7):1627–39.
Article PubMed Central PubMed Google Scholar
Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21.
Article PubMed Central PubMed Google Scholar
Bhaskar D, Chang TA, Wang S. Current trends in artificial intelligence in reproductive endocrinology. Curr Opin Obstet Gynecol. 2022;34(4):159–63.
Dong X, Chen G, Zhu Y, Ma B, Ban X, Wu N, et al. Artificial intelligence in skeletal metastasis imaging. Comput Struct Biotechnol J. 2024;23:157–64.
Rosenwaks Z. Artificial intelligence in reproductive medicine: a fleeting concept or the wave of the future? Fertil Steril. 2020;114(5):905–7.
Article CAS PubMed Google Scholar
Hanassab S, Abbara A, Yeung AC, Voliotis M, Tsaneva-Atanasova K, Kelsey TW, et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55.
Article PubMed Central PubMed Google Scholar
Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36(4):591–600.
Article PubMed Central PubMed Google Scholar
Jiang VS, Pavlovic ZJ, Hariton E. The role of artificial intelligence and machine learning in assisted reproductive technologies. Obstet Gynecol Clin North Am. 2023;50(4):747–62.
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, Pooniwala R, Kandula H, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020;9. https://doi.org/10.7554/eLife.55301
Curchoe CL, Bormann C, Hammond E, Salter S, Timlin C, Williams LB, et al. Assuring quality in assisted reproduction laboratories: assessing the performance of ART Compass - a digital art staff management platform. J Assist Reprod Genet. 2023;40(2):265–78.
Article PubMed Central PubMed Google Scholar
Jiang VS, Bormann CL. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17–23.
Coelho Neto MA, Ludwin A, Borrell A, Benacerraf B, Dewailly D, da Silva CF, et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20.
Article CAS PubMed Google Scholar
Li H, Fang J, Liu S, Liang X, Yang X, Mai Z, et al. CR-Unet: a composite network for ovary and follicle segmentation in ultrasound images. IEEE J Biomed Health Inform. 2020;24(4):974–83.
Mathur P, Kakwani K, Diplav KS, Ga R. Deep learning based quantification of ovary and follicles using 3D transvaginal ultrasound in assisted reproduction. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2109–12.
Yang X, Li H, Wang Y, Liang X, Chen C, Zhou X, et al. Contrastive rendering with semi-supervised learning for ovary and follicle segmentation from 3D ultrasound. Med Image Anal. 2021;73:102134.
Liang X, Liang J, Zeng F, Lin Y, Li Y, Cai K, et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reprod Biomed Online. 2022;45(6):1197–206.
Article CAS PubMed Google Scholar
Noor N, Vignarajan CP, Malhotra N, Vanamail P. Three-dimensional automated volume calculation (sonography-based automated volume count) versus two-dimensional manual ultrasonography for follicular tracking and oocyte retrieval in women undergoing in vitro fertilization-embryo transfer: a randomized controlled trial. J Hum Reprod Sci. 2020;13(4):296–302.
Article PubMed Central PubMed Google Scholar
Manna C, Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod Biomed Online. 2013;26(1):42–9.
Targosz A, Przystalka P, Wiaderkiewicz R, Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20(1):40.
Article PubMed Central PubMed Google Scholar
Fjeldstad J, Qi W, Mercuri N, Siddique N, Meriano J, Krivoi A, et al. An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes. Reprod Biomed Online. 2024;48(6):103842.
Boylan CF, Sambo KM, Neal-Perry G, Brayboy LM. Ex ovo omnia-why don’t we know more about egg quality via imaging? Biol Reprod. 2024;110(6):1201–12.
Article PubMed Central PubMed Google Scholar
Ferrand T, Boulant J, He C, Chambost J, Jacques C, Pena CA, et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Hum Reprod. 2023;38(10):1918–26.
Article PubMed Central PubMed Google Scholar
Simopoulou M, Sfakianoudis K, Maziotis E, Antoniou N, Rapani A, Anifandis G, et al. Are computational applications the “crystal ball” in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet. 2018;35(9):1545–57.
Article PubMed Central PubMed Google Scholar
Basile N, Elkhatib I, Meseguer M. A strength, weaknesses, opportunities and threats analysis on time lapse. Curr Opin Obstet Gynecol. 2019;31(3):148–55.
Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–20.
Article CAS PubMed Google Scholar
Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81.
Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47.
Article CAS PubMed Google Scholar
Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287-94 e5.
Meng Q, Xu Y, Zheng A, Li H, Ding J, Xu Y, et al. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization/intracytoplasmic sperm injection: a single-center randomized controlled study. Fertil Steril. 2022;117(6):1203–12.
留言 (0)