Cortical drive may facilitate enhanced use of the paretic leg induced by random constraint force to the non-paretic leg during walking in chronic stroke

Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain (London England: 1878) 122:855–870. https://doi.org/10.1093/brain/122.5.855

Article  Google Scholar 

Ardestani MM, Kinnaird CR, Henderson CE, Hornby TG (2019) Compensation or recovery? Altered kinetics and neuromuscular synergies following high-intensity stepping training Poststroke. Neurorehabil Neural Repair 33:47–58. https://doi.org/10.1177/1545968318817825

Article  PubMed  Google Scholar 

Awad LN, Lewek MD, Kesar TM, Franz JR, Bowden MG (2020) These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. J Neuroeng Rehabil 17:139. https://doi.org/10.1186/s12984-020-00747-6

Article  PubMed  PubMed Central  Google Scholar 

Bonnyaud C, Pradon D, Zory R, Bussel B, Bensmail D, Vuillerme N, Roche N (2013) Effects of a gait training session combined with a mass on the non-paretic lower limb on locomotion of hemiparetic patients: a randomized controlled clinical trial. Gait Posture 37:627–630. https://doi.org/10.1016/j.gaitpost.2012.09.010

Article  PubMed  CAS  Google Scholar 

Bonnyaud C, Zory R, Boudarham J, Pradon D, Bensmail D, Roche N (2014) Effect of a robotic restraint gait training versus robotic conventional gait training on gait parameters in stroke patients. Exp Brain Res 232:31–42. https://doi.org/10.1007/s00221-013-3717-8

Article  PubMed  Google Scholar 

Bourguignon M, Jousmaki V, Dalal SS, Jerbi K, De Tiege X (2019) Coupling between human brain activity and body movements: insights from non-invasive electromagnetic recordings. NeuroImage 203:116177. https://doi.org/10.1016/j.neuroimage.2019.116177

Article  PubMed  Google Scholar 

Bowden MGPPT, Behrman ALPPT, Neptune RRP, Gregory CMPPT, Kautz SAP (2013) Locomotor Rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil 94:856–862. https://doi.org/10.1016/j.apmr.2012.11.032

Article  PubMed  Google Scholar 

Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor Task Variation induces structural learning. Curr Biol 19:352–357. https://doi.org/10.1016/j.cub.2009.01.036

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chatrian GE, Lettich E, Nelson PL (1985) 10% Electrode System for Topographic Studies of Spontaneous and evoked EEG activities. Am J E E G Technol 25:83–92. https://doi.org/10.1080/00029238.1985.11080163

Article  Google Scholar 

Chen G, Patten C, Kothari DH, Zajac FE (2005) Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 22:51–56. https://doi.org/10.1016/j.gaitpost.2004.06.009

Article  PubMed  Google Scholar 

Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26:3697–3712. https://doi.org/10.1523/JNEUROSCI.3762-05.2006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123. https://doi.org/10.1152/jn.1998.79.2.1117

Article  PubMed  CAS  Google Scholar 

Davies JL (2020) Using transcranial magnetic stimulation to map the cortical representation of lower-limb muscles. Clin Neurophysiol Pract 5:87–99. https://doi.org/10.1016/j.cnp.2020.04.001

Article  PubMed  PubMed Central  Google Scholar 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Article  PubMed  Google Scholar 

Dhawale AK, Smith MA, Olveczky BP (2017) The role of variability in Motor Learning. Annu Rev Neurosci 40:479–498. https://doi.org/10.1146/annurev-neuro-072116-031548

Article  PubMed  PubMed Central  CAS  Google Scholar 

Diedrichsen J, White O, Newman D, Lally N (2010) Use-Dependent and Error-based learning of Motor behaviors. J Neurosci 30:5159–5166. https://doi.org/10.1523/JNEUROSCI.5406-09.2010

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dietz V, Quintern J, Boos G, Berger W (1986) Obstruction of the swing phase during gait: phase-dependent bilateral leg muscle coordination. Brain Res 384:166–169. https://doi.org/10.1016/0006-8993(86)91233-3

Article  PubMed  CAS  Google Scholar 

Duncan PW, Zorowitz R, Bates B et al (2005) Management of adult stroke rehabilitation care - A clinical practice guideline. Stroke (1970) 36:E100-E143 https://doi.org/10.1161/01.STR.0000180861.54180.FF

Espenhahn S, van Wijk BCM, Rossiter HE et al (2019) Cortical beta oscillations are associated with motor performance following visuomotor learning. NeuroImage (Orlando Fla) 195:340–353. https://doi.org/10.1016/j.neuroimage.2019.03.079

Article  Google Scholar 

Espenhahn S, Rossiter HE, van Wijk BCM, Redman N, Rondina JM, Diedrichsen J, Ward NS (2020) Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Commun 2:fcaa161–fcaa161. https://doi.org/10.1093/braincomms/fcaa161

Article  PubMed  PubMed Central  Google Scholar 

Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566. https://doi.org/10.5194/npg-11-561-2004

Article  Google Scholar 

Gross J, Pollok B, Dirks M, Timmermann L, Butz M, Schnitzler A (2005) Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage (Orlando Fla) 26:91–98. https://doi.org/10.1016/j.neuroimage.2005.01.025

Article  CAS  Google Scholar 

Hao Z, Zhai X, Cheng D, Pan Y, Dou W (2022) EEG Microstate-Specific Functional Connectivity and stroke-related alterations in Brain Dynamics. Front NeuroSci 16:848737–848737. https://doi.org/10.3389/fnins.2022.848737

Article  PubMed  PubMed Central  Google Scholar 

Harris JE, Eng JJ (2004) Goal priorities identified through client-centred measurement in individuals with chronic stroke. Physiotherapy Can 56:171–176. https://doi.org/10.2310/6640.2004.00017

Article  Google Scholar 

Herzfeld DJ, Shadmehr R (2014a) Motor variability is not noise, but grist for the learning mill. Nat Neurosci 17:149–150. https://doi.org/10.1038/nn.3633

Article  PubMed  CAS  Google Scholar 

Herzfeld DJ, Shadmehr R (2014b) Motor variability is not noise, but grist for the learning mill. Nat Neurosci 17:149–150. https://doi.org/10.1038/nn.3633

Article  PubMed  CAS  Google Scholar 

Hsu CJ, Kim J, Roth EJ, Rymer WZ, Wu M (2017) Forced use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in individuals Poststroke during walking. Neurorehabil Neural Repair 31:1042–1052. https://doi.org/10.1177/1545968317740972

Article  PubMed  PubMed Central  Google Scholar 

James GA, Lu ZL, VanMeter J, Sathian K, Hu XP, Butler AJ (2009) Changes in resting-state motor network effective connectivity following upper-extremity rehabilitation in acute stroke. NeuroImage (Orlando Fla) 47:S146–S146. https://doi.org/10.1016/S1053-8119(09)71481-8

Article  Google Scholar 

Jax SA, Rosenbaum DA (2007) Hand path priming in manual obstacle avoidance: evidence that the dorsal stream does not only control visually guided actions in real time. J Exp Psychol Hum Percept Perform 33:425–441. https://doi.org/10.1037/0096-1523.33.2.425

Article  PubMed  Google Scholar 

Jensen P, Frisk R, Spedden ME, Geertsen SS, Bouyer LJ, Halliday DM, Nielsen JB (2019) Using Corticomuscular and Intermuscular coherence to assess cortical contribution to Ankle Plantar Flexor Activity during Gait. J Mot Behav 51:668–680. https://doi.org/10.1080/00222895.2018.1563762

Article  PubMed  Google Scholar 

Kantak SS, Sullivan KJ, Fisher BE, Knowlton BJ, Winstein CJ (2010a) Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci 13:923–925. https://doi.org/10.1038/nn.2596

留言 (0)

沒有登入
gif