Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway

Ameen-Ali KE, Bretzin A, Lee EB, Folkerth R, Hazrati LN, Iacono D et al (2022) Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathol Commun 10:50. https://doi.org/10.1186/s40478-022-01353-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrejewski N, Punnonen EL, Guhde G, Tanaka Y, Lullmann-Rauch R, Hartmann D (1999) Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem 274:12692–12701. https://doi.org/10.1074/jbc.274.18.12692

Article  CAS  PubMed  Google Scholar 

Anthony Jalin AMA, Jin R, Wang M, Li G (2019) EPPS treatment attenuates traumatic brain injury in mice by reducing abeta burden and ameliorating neuronal autophagic flux. Exp Neurol 314:20–33. https://doi.org/10.1016/j.expneurol.2019.01.002

Article  CAS  PubMed  Google Scholar 

Arena JD, Johnson VE, Lee EB, Gibbons GS, Smith DH, Trojanowski JQ et al (2020) Astroglial tau pathology alone preferentially concentrates at sulcal depths in chronic traumatic encephalopathy neuropathologic change. Brain Commun 2:fcaa210. https://doi.org/10.1093/braincomms/fcaa210

Article  PubMed  PubMed Central  Google Scholar 

Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584–1593. https://doi.org/10.1038/nn.4132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E (2023) Compilation of reported protein changes in the brain in alzheimer’s disease. Nat Commun 14:4466. https://doi.org/10.1038/s41467-023-40208-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K (2018) Association of mild traumatic brain injury with and without loss of consciousness with dementia in US military veterans. JAMA Neurol 75:1055–1061. https://doi.org/10.1001/jamaneurol.2018.0815

Article  PubMed  PubMed Central  Google Scholar 

Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23:635–659. https://doi.org/10.1089/neu.2006.23.635

Article  PubMed  Google Scholar 

Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG et al (2015) Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35:354–389. https://doi.org/10.1111/neup.12189

Article  PubMed  PubMed Central  Google Scholar 

Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688. https://doi.org/10.1038/nrd.2018.109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brennan DJ, Duda J, Ware JB, Whyte J, Choi JY, Gugger J et al (2023) Spatiotemporal profile of atrophy in the first year following moderate-severe traumatic brain injury. Hum Brain Mapp 44:4692–4709. https://doi.org/10.1002/hbm.26410

Article  PubMed  PubMed Central  Google Scholar 

Carra S, Seguin SJ, Landry J (2008) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4:237–239. https://doi.org/10.4161/auto.5407

Article  CAS  PubMed  Google Scholar 

Chakraborty D, Felzen V, Hiebel C, Sturner E, Perumal N, Manicam C et al (2019) Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biol 24:101181. https://doi.org/10.1016/j.redox.2019.101181

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen S, Acosta D, Li L, Liang J, Chang Y, Wang C et al (2022) Wolframin is a novel regulator of tau pathology and neurodegeneration. Acta Neuropathol 143:547–569. https://doi.org/10.1007/s00401-022-02417-4

Article  CAS  PubMed  Google Scholar 

Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY et al (2013) Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteom 12:2804–2819. https://doi.org/10.1074/mcp.M112.025882

Article  CAS  Google Scholar 

Cheng WH, Cheung H, Kang A, Fan J, Cooper J, Anwer M et al (2023) Altered tau kinase activity in rTg4510 mice after a single interfaced CHIMERA traumatic brain injury. Int J Mol Sci. https://doi.org/10.3390/ijms24119439

Article  PubMed  PubMed Central  Google Scholar 

Cortes CJ, La Spada AR (2019) TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiol Dis 122:83–93. https://doi.org/10.1016/j.nbd.2018.05.012

Article  CAS  PubMed  Google Scholar 

Cummins TL, Dore V, Feizpour A, Krishnadas N, Bourgeat P, Elias A et al (2023) Tau, beta-amyloid, and glucose metabolism following service-related traumatic brain injury in Vietnam war veterans: the Australian imaging biomarkers and lifestyle study of aging-veterans study (AIBL-VETS). J Neurotrauma 40:1086–1097. https://doi.org/10.1089/neu.2022.0172

Article  PubMed  PubMed Central  Google Scholar 

Duong H, Han M (2013) A multispectral LED array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods 220:46–54. https://doi.org/10.1016/j.jneumeth.2013.08.018

Article  PubMed  Google Scholar 

Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Asp Med 27:495–502. https://doi.org/10.1016/j.mam.2006.08.005

Article  CAS  Google Scholar 

Fann JR, Ribe AR, Pedersen HS, Fenger-Gron M, Christensen J, Benros ME et al (2018) Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry 5:424–431. https://doi.org/10.1016/S2215-0366(18)30065-8

Article  PubMed  Google Scholar 

Fu H, Possenti A, Freer R, Nakano Y, Hernandez Villegas NC, Tang M et al (2019) A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci 22:47–56. https://doi.org/10.1038/s41593-018-0298-7

Article  CAS  PubMed  Google Scholar 

Gao F, Hu M, Zhang J, Hashem J, Chen C (2022) TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 144:187–210. https://doi.org/10.1007/s00401-022-02449-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Deng P, Xu ZC, Chen J (2011) Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS ONE 6:e24566. https://doi.org/10.1371/journal.pone.0024566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerson J, Castillo-Carranza DL, Sengupta U, Bodani R, Prough DS, DeWitt DS et al (2016) Tau oligomers derived from traumatic brain injury cause cognitive impairment and accelerate onset of pathology in htau mice. J Neurotrauma 33:2034–2043. https://doi.org/10.1089/neu.2015.4262

Article  PubMed  PubMed Central  Google Scholar 

Gibbons LE, Power MC, Walker RL, Kumar RG, Murphy A, Latimer CS et al (2023) Association of traumatic brain injury with late life neuropathological outcomes in a community-based cohort. J Alzheimers Dis 93:949–961. https://doi.org/10.3233/JAD-221224

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA et al (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4:134ra160. https://doi.org/10.1126/scitranslmed.3003716

Article 

留言 (0)

沒有登入
gif