Canale VC, Smith CH. Chronic lymphadenopathy simulating malignant lymphoma. J Pediatr. 1967;70:891–9.
Article CAS PubMed Google Scholar
Rieux-Laucat F, Magérus-Chatinet A, Neven B. The autoimmune lymphoproliferative syndrome with defective FAS or FAS-Ligand functions. J Clin Immunol. 2018;38:558–68.
Article CAS PubMed Google Scholar
Magerus A, Bercher-Brayer C, Rieux-Laucat F. The genetic landscape of the FAS pathway deficiencies. Biomed J. 2021;44:388–99.
Article PubMed Central CAS PubMed Google Scholar
Bettinardi A, Brugnoni D, Quiròs-Roldan E, Malagoli A, La Grutta S, Correra A, et al. Missense mutations in the Fas Gene resulting in Autoimmune Lymphoproliferative Syndrome: a molecular and immunological analysis. Blood. 1997;89:902–9.
Article CAS PubMed Google Scholar
Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IAG, Debatin KM, Fischer A, et al. Mutations in Fas Associated with Human Lymphoproliferative Syndrome and Autoimmunity. Science. 1995;268:1347–9.
Article CAS PubMed Google Scholar
Kasahara Y, Wada T, Niida Y, Yachie A, Seki H, Ishida Y, et al. Novel Fas (CD95/APO-1) mutations in infants with a lymphoproliferative disorder. Int Immunol. 1998;10:195–202.
Article CAS PubMed Google Scholar
Elgharbawy FM, Karim MY, Soliman DS, Hassan AS, Sudarsanan A, Gad A. Case report: neonatal autoimmune lymphoproliferative syndrome with a novel pathogenic homozygous FAS variant effectively treated with sirolimus. Front Pediatr. 2023;11:1150179.
Article PubMed Central PubMed Google Scholar
Hansford JR, Pal M, Poplawski N, Haan E, Boog B, Ferrante A, et al. In utero and early postnatal presentation of autoimmune lymphoproliferative syndrome in a family with a novel FAS mutation. Haematologica. 2013;98:e38.
Article PubMed Central PubMed Google Scholar
Naveed M, Butt UBK, Mannan J. Autoimmune Lymphoproliferative Syndrome Neonatal Onset. 2014;24.
Kahwash SB, Fung B, Savelli S, Bleesing JJ, Qualman SJ. Autoimmune lymphoproliferative syndrome (ALPS): a case with congenital onset. Pediatr Dev Pathol. 2007;10:315–9.
van der Burg M, de Groot R, Comans-Bitter WM, den Hollander JC, Hooijkaas H, Neijens HJ, et al. Autoimmune lymphoproliferative syndrome (ALPS) in a child from consanguineous parents: a dominant or recessive disease? Pediatr Res. 2000;47(3):336–43.
Chandramati J, Sidharthan N, Ponthenkandath S. Neonatal autoimmune lymphoproliferative syndrome: a case report and a brief review. J Pediatr Hematol Oncol. 2021;43(2):e227–e229.
Lai N, Liu L, Lin L, Cui C, Wang Y, Min Q, et al. Effective and safe treatment of a novel IL2RA deficiency with rapamycin. J Allergy Clin Immunol Pract. 2020;8:1132–e11354.
Gao J, Luo Y, Li H, Zhao Y, Zhao J, Han X, et al. Deep immunophenotyping of human whole blood by standardized multi-parametric Flow cytometry analyses. Phenomics. 2023;3:309–28.
Article PubMed Central CAS PubMed Google Scholar
Wang Y, Wang W, Liu L, Hou J, Ying W, Hui X, et al. Report of a Chinese cohort with activated phosphoinositide 3-Kinase δ syndrome. J Clin Immunol. 2018;38:854–63.
Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:e35–40.
Mahnke YD, Beddall MH, Roederer M. OMIP-013: differentiation of human T-cells. Cytometry A. 2012;81A:935–6.
Staser KW, Eades W, Choi J, Karpova D, DiPersio JF. OMIP-042: 21-color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood. Cytom Part J Int Soc Anal Cytol. 2018;93:186–9.
Healy ZR, Murdoch DM. OMIP-036: co-inhibitory receptor (immune checkpoint) expression analysis in human T cell subsets. Cytometry A. 2016;89:889–92.
Article PubMed Central CAS PubMed Google Scholar
Swanson IIPA, Seder RA. OMIP-067: 28-Color Flow Cytometry Panel to evaluate human T-Cell phenotype and function. Cytometry A. 2020;97:1032–6.
Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25:487–95.
Article PubMed Central CAS PubMed Google Scholar
Palmer BE, Blyveis N, Fontenot AP, Wilson CC. Functional and phenotypic characterization of CD57 + CD4 + T cells and Their Association with HIV-1-Induced T cell Dysfunction1. J Immunol. 2005;175:8415–23.
Article CAS PubMed Google Scholar
Pedroza-Seres M, Linares M, Voorduin S, Enrique R, Lascurain R, Garfias Y, et al. Pars planitis is associated with an increased frequency of effector‐memory CD57 + T cells. Br J Ophthalmol. 2007;91:1393–8.
Article PubMed Central PubMed Google Scholar
Mahnke YD, Beddall MH, Roederer M. OMIP-017: human CD4 + helper T-cell subsets including follicular helper cells. Cytom Part J Int Soc Anal Cytol. 2013;83:439–40.
Biancotto A, Dagur PK, Fuchs JC, Langweiler M, McCoy JP. OMIP-004: In-Depth Characterization of Human T Regulatory Cells. Cytom Part J Int Soc Anal Cytol. 2012;81:15–6.
Liechti T, Roederer M. OMIP-060: 30-Parameter Flow Cytometry Panel to Assess T Cell Effector Functions and Regulatory T Cells. Cytometry A. 2019;95:1129–34.
Article CAS PubMed Google Scholar
Mahnke YD, Beddall MH, Roederer M. OMIP-015: human regulatory and activated T-cells without intracellular staining. Cytometry A. 2013;83A:179–81.
Murdoch DM, Staats JS, Weinhold KJ. OMIP-006: Phenotypic Subset Analysis of Human T Regulatory Cells (Tregs) via Polychromatic Flow Cytometry. Cytometry. 2012;81:281–3.
Article PubMed Central PubMed Google Scholar
Park LM, Lannigan J, Jaimes MC. OMIP-069: forty-color full spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell subsets in Human Peripheral blood. Cytometry A. 2020;97:1044–51.
Article PubMed Central CAS PubMed Google Scholar
Rakhmanov M, Keller B, Gutenberger S, Foerster C, Hoenig M, Driessen G, et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Natl Acad Sci U S A. 2009;106:13451–6.
Article PubMed Central CAS PubMed Google Scholar
Golinski M-L, Demeules M, Derambure C, Riou G, Maho-Vaillant M, Boyer O, et al. CD11c+ B cells are mainly memory cells, precursors of antibody secreting cells in healthy donors. Front Immunol. 2020;11:32.
Min Q, Meng X, Zhou Q, Wang Y, Li Y, Lai N, et al. RAG1 splicing mutation causes enhanced B cell differentiation and autoantibody production. JCI Insight. 2021;6(19):e148887.
Szczawińska-Popłonyk A, Grześk E, Schwartzmann E, Materna-Kiryluk A, Małdyk J. Case Report: autoimmune lymphoproliferative syndrome vs. chronic active Epstein-Barr Virus infection in children: a diagnostic challenge. Front Pediatr. 2021;9:798959.
Article PubMed Central PubMed Google Scholar
Pace R, Vinh DC. Autoimmune lymphoproliferative syndrome and Epstein-Barr Virus-Associated Lymphoma: an adjunctive diagnostic role for monitoring EBV viremia? Case Rep Immunol. 2013;2013:245893.
Arkwright PD, Rieux-Laucat F, Le Deist F, Stevens RF, Angus B, Cant AJ. Cytomegalovirus infection in infants with autoimmune lymphoproliferative syndrome (ALPS). Clin Exp Immunol. 2000;121:353–7.
Article PubMed Central CAS PubMed Google Scholar
Lisco A, Wong C-S, Price S, Ye P, Niemela J, Anderson M, et al. Paradoxical CD4 Lymphopenia in Autoimmune Lymphoproliferative Syndrome (ALPS). Front Immunol. 2019;10:1193.
Article PubMed Central CAS PubMed Google Scholar
Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeciency. Nature. 2002;419(6905):395–99.
Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primer. 2017;3:1–16.
De Francesco MA, Ianiro G, Monini M, Vezzoli C, Schumacher RF, Giliani S, et al. Persistent infection with Rotavirus Vaccine strain in severe combined immunodeficiency (SCID) child: is Rotavirus Vaccination in SCID Children a Janus Face? Vaccines. 2019;7:185.
留言 (0)