Conceptualizing meaningful between-group difference in change over time: a demonstration of possible viewpoints

Mercieca-Bebber, R., King, M. T., Calvert, M. J., et al. (2018). The importance of patient-reported outcomes in clinical trials and strategies for future optimization. Patient Relat Outcome Meas, 9, 353–367. https://doi.org/10.2147/PROM.S156279

Article  PubMed  PubMed Central  Google Scholar 

Coens, C., Pe, M., Dueck, A. C., et al. (2020). International standards for the analysis of quality-of-life and patient-reported outcome endpoints in cancer randomised controlled trials: Recommendations of the SISAQOL Consortium. The Lancet Oncology, 21, e83–e96. https://doi.org/10.1016/S1470-2045(19)30790-9

Article  PubMed  Google Scholar 

Collister, D., Bangdiwala, S., Walsh, M., et al. (2021). Patient reported outcome measures in clinical trials should be initially analyzed as continuous outcomes for statistical significance and responder analyses should be reserved as secondary analyses. Journal of Clinical Epidemiology, 134, 95–102. https://doi.org/10.1016/j.jclinepi.2021.01.026

Article  PubMed  Google Scholar 

Qian, Y., Walters, S. J., Jacques, R., & Flight, L. (2021). Comprehensive review of statistical methods for analysing patient-reported outcomes (PROs) used as primary outcomes in randomised controlled trials (RCTs) published by the UK’s Health Technology Assessment (HTA) journal (1997–2020). British Medical Journal Open, 11, e051673. https://doi.org/10.1136/bmjopen-2021-051673

Article  Google Scholar 

Abugov, R., Clark, J., Higginbotham, L., et al. (2023). Should responder analyses be conducted on continuous outcomes? Pharmaceutical Statistics, 22, 312–327. https://doi.org/10.1002/pst.2273

Article  PubMed  Google Scholar 

Senn, S. (2003). Disappointing dichotomies. Pharmaceutical Statistics, 2, 239–240. https://doi.org/10.1002/pst.90

Article  Google Scholar 

Terwee, C. B., Peipert, J. D., Chapman, R., et al. (2021). Minimal important change (MIC): A conceptual clarification and systematic review of MIC estimates of PROMIS measures. Quality of Life Research, 30, 2729–2754. https://doi.org/10.1007/s11136-021-02925-y

Article  PubMed  PubMed Central  Google Scholar 

Trigg, A., Lenderking, W. R., & Boehnke, J. R. (2023). Introduction to the special section: Methodologies and considerations for meaningful change. Quality of Life Research, 32, 1223–1230. https://doi.org/10.1007/s11136-023-03413-1

Article  PubMed  Google Scholar 

Coon, C. D., & Cook, K. F. (2018). Moving from significance to real-world meaning: Methods for interpreting change in clinical outcome assessment scores. Quality of Life Research, 27, 33–40. https://doi.org/10.1007/s11136-017-1616-3

Article  PubMed  Google Scholar 

FDA. (2009). Guidance for industry patient-reported outcome measures: Use in medical product development to support labeling claims.

Vanier, A., Leroy, M., & Hardouin, J-B. (2022). Toward a rigorous assessment of the statistical performances of methods to estimate the minimal important difference of patient-reported outcomes: A protocol for a large-scale simulation study. Methods, 204, 396–409. https://doi.org/10.1016/j.ymeth.2022.02.006

Article  CAS  PubMed  Google Scholar 

Bjorner, J. B., Terluin, B., Trigg, A., et al. (2022). Establishing thresholds for meaningful within-individual change using longitudinal item response theory. Quality of Life Research. https://doi.org/10.1007/s11136-022-03172-5

Article  PubMed  PubMed Central  Google Scholar 

Vanier, A., Sébille, V., Blanchin, M., & Hardouin, J.-B. (2021). The minimal perceived change: A formal model of the responder definition according to the patient’s meaning of change for patient-reported outcome data analysis and interpretation. BMC Medical Research Methodology, 21, 128. https://doi.org/10.1186/s12874-021-01307-9

Article  PubMed  PubMed Central  Google Scholar 

Staunton, H., Willgoss, T., Nelsen, L., et al. (2019). An overview of using qualitative techniques to explore and define estimates of clinically important change on clinical outcome assessments. Journal of Patient-Reported Outcomes, 3, 16. https://doi.org/10.1186/s41687-019-0100-y

Article  PubMed  PubMed Central  Google Scholar 

Sabah, S. A., Alvand, A., Beard, D. J., & Price, A. J. (2022). Minimal important changes and differences were estimated for Oxford hip and knee scores following primary and revision arthroplasty. Journal of Clinical Epidemiology, 143, 159–168. https://doi.org/10.1016/j.jclinepi.2021.12.016

Article  PubMed  Google Scholar 

Bell, M. L., Dhillon, H. M., Bray, V. J., & Vardy, J. L. (2018). Important differences and meaningful changes for the Functional Assessment of Cancer Therapy-Cognitive function (FACT-Cog). Journal of Patient-Reported Outcomes, 2, 48. https://doi.org/10.1186/s41687-018-0071-4

Article  PubMed Central  Google Scholar 

McLeod, L. D., Cappelleri, J. C., & Hays, R. D. (2016). Best (but oft-forgotten) practices: Expressing and interpreting associations and effect sizes in clinical outcome assessments1. The American Journal of Clinical Nutrition, 103, 685–693. https://doi.org/10.3945/ajcn.115.120378

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musoro, Z. J., Hamel, J-F., Ediebah, D. E., et al. (2018). Establishing anchor-based minimally important differences (MID) with the EORTC quality-of-life measures: A meta-analysis protocol. British Medical Journal Open, 8, e019117. https://doi.org/10.1136/bmjopen-2017-019117

Article  Google Scholar 

Dworkin, R. H., Turk, D. C., McDermott, M. P., et al. (2009). Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain, 146, 238–244. https://doi.org/10.1016/j.pain.2009.08.019

Article  PubMed  Google Scholar 

Smith, S. M., Dworkin, R. H., Turk, D. C., et al. (2020). Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain, 161, 2446–2461. https://doi.org/10.1097/j.pain.0000000000001952

Article  PubMed  PubMed Central  Google Scholar 

Holland, P. W. (2002). Two measures of change in the gaps between the CDFs of test-score distributions. Journal of Educational and Behavioral Statistics, 27, 3–17. https://doi.org/10.3102/10769986027001003

Article  Google Scholar 

R Core Team. (2023). R: A language and environment for statistical computing.

Bingham, C. O. III, Butanis, A. L., Orbai, A. M., et al. (2021). Patients and clinicians define symptom levels and meaningful change for PROMIS pain interference and fatigue in RA using bookmarking. Rheumatology, 60, 4306–4314. https://doi.org/10.1093/rheumatology/keab014

Article  PubMed  PubMed Central  Google Scholar 

Cocks, K., King, M. T., Velikova, G., et al. (2011). Evidence-based guidelines for determination of sample size and interpretation of the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. Journal of Clinical Oncology, 29, 89–96. https://doi.org/10.1200/JCO.2010.28.0107

Article  PubMed  Google Scholar 

Cook, J. A., Julious, S. A., Sones, W., et al. (2018). DELTA2 guidance on choosing the target difference and undertaking and reporting the sample size calculation for a randomised controlled trial. Trials, 19, 606. https://doi.org/10.1186/s13063-018-2884-0

Article  PubMed  PubMed Central  Google Scholar 

Ellis, L. M., Bernstein, D. S., Voest, E. E., et al. (2014). American Society of Clinical Oncology Perspective: Raising the bar for clinical trials by defining clinically meaningful outcomes. JCO, 32, 1277–1280. https://doi.org/10.1200/JCO.2013.53.8009

Article  Google Scholar 

Cherny, N. I., Sullivan, R., Dafni, U., et al. (2015). A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: The European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS). Annals of Oncology, 26, 1547–1573. https://doi.org/10.1093/annonc/mdv249

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif