The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependency

Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019;58:850–8.

Article  PubMed  CAS  Google Scholar 

Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11:41.

Article  PubMed  PubMed Central  Google Scholar 

Yang XJ, Ullah M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene. 2007;26:5408–19.

Article  PubMed  CAS  Google Scholar 

Perez-Campo FM, Costa G, Lie-a-Ling M, Kouskoff V, Lacaud G. The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis. Immunology. 2013;139:161–5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 2006;20:1175–86.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sheikh BN, Yang Y, Schreuder J, Nilsson SK, Bilardi R, Carotta S, et al. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood. 2016;128:2307–18.

Article  PubMed  CAS  Google Scholar 

Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, et al. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 2006;20:1321–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood. 2009;113:4866–74.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Perez-Campo FM, Costa G, Lie-a-Ling M, Stifani S, Kouskoff V, Lacaud G. MOZ-Mediated repression of p16INK4a is critical for the Self-Renewal of neural and hematopoietic stem cells. Stem Cells. 2014;32:1591–601.

Article  PubMed  CAS  Google Scholar 

Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J. 2001;20:7184–96.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang XJ. MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim Biophys Acta Mol Cell Res. 2015;1853:1818–26.

Article  CAS  Google Scholar 

Paggetti J, Largeot A, Aucagne R, Jacquel A, Lagrange B, Yang XJ, et al. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34 cells. Oncogene. 2010;29:5019–31.

Article  PubMed  CAS  Google Scholar 

Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6.

Au YZ, Gu M, De Braekeleer E, Gozdecka M, Aspris D, Tarumoto Y, et al. KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia. 2020. https://doi.org/10.1038/s41375-020-1001-z.

Article  PubMed  PubMed Central  Google Scholar 

Yan F, Li J, Milosevic J, Petroni R, Liu S, Shi Z, et al. KAT6A and ENL Form an Epigenetic Transcriptional Control Module to drive critical leukemogenic gene-expression programs. Cancer Discov. 2022;12:792–811.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Katsumoto T, Ogawara Y, Yamagata K, Aikawa Y, Goitsuka R, Nakamura T, et al. MOZ is critical for the development of MOZ/MLL fusion–induced leukemia through regulation of Hoxa9/Meis1 expression. Blood Adv. 2022;6:5527–37.

Article  PubMed  PubMed Central  CAS  Google Scholar 

DepMap B. DepMap 20Q2 Public. figshare. Dataset. 2020;:https://doi.org/10.6084/m9.figshare.12280541.v4

Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dempster J, Rossen J, Kazachkova M, Pan J, Kugener G, Root D et al. Extracting Biological insights from the Project Achilles Genome-Scale CRISPR screens in Cancer Cell lines. BioRXiv. 2019. https://doi.org/10.1101/720243

Baell JB, Leaver DJ, Hermans SJ, Kelly GL, Brennan MS, Downer NL, et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature. 2018;560:253–7.

Article  PubMed  CAS  Google Scholar 

Kayser S, Hills RK, Langova R, Kramer M, Guijarro F, Sustkova Z, et al. Characteristics and outcome of patients with acute myeloid leukaemia and t(8;16)(p11;p13): results from an International Collaborative Study*. Br J Haematol. 2021;192:832–42.

Article  PubMed  CAS  Google Scholar 

Rozman M, Camós M, Colomer D, Villamor N, Esteve J, Costa D, et al. Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in Acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer. 2004;40:140–5.

Article  PubMed  CAS  Google Scholar 

Wong KF, Yuen HL, Siu LLP, Pang A, Kwong YL. T(8;16)(P11;P13) predisposes to a transient but potentially recurring neonatal leukemia. Hum Pathol. 2008;39:1702–7.

Article  PubMed  CAS  Google Scholar 

Brown T, Swansbury J, Taj MM. Prognosis of patients with t(8;16)(p11;p13) acute myeloid leukemia. Leuk Lymphoma. 2012;53:338–41.

Article  PubMed  Google Scholar 

Schmidt HH, Strehl S, Thaler D, Strunk D, Sill H, Linkesh W, et al. RT-PCR and FISH analysis of acute myeloid leukemia with t(8;16)(p11;p13) and chimeric MOZ and CBP transcripts: breakpoint cluster region and clinical implications. Leukemia. 2004;18:1115–21.

Article  PubMed  CAS  Google Scholar 

Crowley JA, Wang Y, Rapoport AP, Ning Y. Detection of MOZ-CBP fusion in acute myeloid leukemia with 8;16 translocation [8]. Leukemia. 2005;19:2344–5.

Article  PubMed  CAS  Google Scholar 

Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001;15:89–94.

Article  PubMed  CAS  Google Scholar 

Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pébusque MJ. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer. 2000;28:138–44.

Article  PubMed  CAS  Google Scholar 

Carapeti M, Aguiar RCT, Goldman JM, Cross NCP. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91:3127–33.

Article  PubMed  CAS  Google Scholar 

Carapeti M, Aguiar RCT, Watmore AE, Goldman JM, Cross NCP. Consistent fusion of MOZ and TIF2 in AML with inv(8)(p11q13). Cancer Genet Cytogenet. 1999;113:70–2.

留言 (0)

沒有登入
gif