Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.
Article PubMed PubMed Central CAS Google Scholar
Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.
Article PubMed PubMed Central CAS Google Scholar
Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer. 2019;58:850–8.
Article PubMed CAS Google Scholar
Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11:41.
Article PubMed PubMed Central Google Scholar
Yang XJ, Ullah M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene. 2007;26:5408–19.
Article PubMed CAS Google Scholar
Perez-Campo FM, Costa G, Lie-a-Ling M, Kouskoff V, Lacaud G. The MYSTerious MOZ, a histone acetyltransferase with a key role in haematopoiesis. Immunology. 2013;139:161–5.
Article PubMed PubMed Central CAS Google Scholar
Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 2006;20:1175–86.
Article PubMed PubMed Central CAS Google Scholar
Sheikh BN, Yang Y, Schreuder J, Nilsson SK, Bilardi R, Carotta S, et al. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood. 2016;128:2307–18.
Article PubMed CAS Google Scholar
Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, et al. MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev. 2006;20:1321–30.
Article PubMed PubMed Central CAS Google Scholar
Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood. 2009;113:4866–74.
Article PubMed PubMed Central CAS Google Scholar
Perez-Campo FM, Costa G, Lie-a-Ling M, Stifani S, Kouskoff V, Lacaud G. MOZ-Mediated repression of p16INK4a is critical for the Self-Renewal of neural and hematopoietic stem cells. Stem Cells. 2014;32:1591–601.
Article PubMed CAS Google Scholar
Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ-CBP fusion protein. EMBO J. 2001;20:7184–96.
Article PubMed PubMed Central CAS Google Scholar
Yang XJ. MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim Biophys Acta Mol Cell Res. 2015;1853:1818–26.
Paggetti J, Largeot A, Aucagne R, Jacquel A, Lagrange B, Yang XJ, et al. Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34 cells. Oncogene. 2010;29:5019–31.
Article PubMed CAS Google Scholar
Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6.
Au YZ, Gu M, De Braekeleer E, Gozdecka M, Aspris D, Tarumoto Y, et al. KAT7 is a genetic vulnerability of acute myeloid leukemias driven by MLL rearrangements. Leukemia. 2020. https://doi.org/10.1038/s41375-020-1001-z.
Article PubMed PubMed Central Google Scholar
Yan F, Li J, Milosevic J, Petroni R, Liu S, Shi Z, et al. KAT6A and ENL Form an Epigenetic Transcriptional Control Module to drive critical leukemogenic gene-expression programs. Cancer Discov. 2022;12:792–811.
Article PubMed PubMed Central CAS Google Scholar
Katsumoto T, Ogawara Y, Yamagata K, Aikawa Y, Goitsuka R, Nakamura T, et al. MOZ is critical for the development of MOZ/MLL fusion–induced leukemia through regulation of Hoxa9/Meis1 expression. Blood Adv. 2022;6:5527–37.
Article PubMed PubMed Central CAS Google Scholar
DepMap B. DepMap 20Q2 Public. figshare. Dataset. 2020;:https://doi.org/10.6084/m9.figshare.12280541.v4
Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.
Article PubMed PubMed Central CAS Google Scholar
Dempster J, Rossen J, Kazachkova M, Pan J, Kugener G, Root D et al. Extracting Biological insights from the Project Achilles Genome-Scale CRISPR screens in Cancer Cell lines. BioRXiv. 2019. https://doi.org/10.1101/720243
Baell JB, Leaver DJ, Hermans SJ, Kelly GL, Brennan MS, Downer NL, et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature. 2018;560:253–7.
Article PubMed CAS Google Scholar
Kayser S, Hills RK, Langova R, Kramer M, Guijarro F, Sustkova Z, et al. Characteristics and outcome of patients with acute myeloid leukaemia and t(8;16)(p11;p13): results from an International Collaborative Study*. Br J Haematol. 2021;192:832–42.
Article PubMed CAS Google Scholar
Rozman M, Camós M, Colomer D, Villamor N, Esteve J, Costa D, et al. Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in Acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer. 2004;40:140–5.
Article PubMed CAS Google Scholar
Wong KF, Yuen HL, Siu LLP, Pang A, Kwong YL. T(8;16)(P11;P13) predisposes to a transient but potentially recurring neonatal leukemia. Hum Pathol. 2008;39:1702–7.
Article PubMed CAS Google Scholar
Brown T, Swansbury J, Taj MM. Prognosis of patients with t(8;16)(p11;p13) acute myeloid leukemia. Leuk Lymphoma. 2012;53:338–41.
Schmidt HH, Strehl S, Thaler D, Strunk D, Sill H, Linkesh W, et al. RT-PCR and FISH analysis of acute myeloid leukemia with t(8;16)(p11;p13) and chimeric MOZ and CBP transcripts: breakpoint cluster region and clinical implications. Leukemia. 2004;18:1115–21.
Article PubMed CAS Google Scholar
Crowley JA, Wang Y, Rapoport AP, Ning Y. Detection of MOZ-CBP fusion in acute myeloid leukemia with 8;16 translocation [8]. Leukemia. 2005;19:2344–5.
Article PubMed CAS Google Scholar
Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, et al. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001;15:89–94.
Article PubMed CAS Google Scholar
Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pébusque MJ. MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer. 2000;28:138–44.
Article PubMed CAS Google Scholar
Carapeti M, Aguiar RCT, Goldman JM, Cross NCP. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91:3127–33.
Article PubMed CAS Google Scholar
Carapeti M, Aguiar RCT, Watmore AE, Goldman JM, Cross NCP. Consistent fusion of MOZ and TIF2 in AML with inv(8)(p11q13). Cancer Genet Cytogenet. 1999;113:70–2.
留言 (0)