Ainsworth E and Gillespie K 2007 Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2 875–877
Arias SL, Mary VS, Velez PA, et al. 2021 Where does the peanut smut pathogen, Thecaphora frezii, fit in the spectrum of smut diseases? Plant Dis. 105 2268–2280
Bakker A, Punte W and Schippers B 1991 Inhibition of potato plant growth by HCN-producing Pseudomonas spp. under gnotobiotic conditions; in Developments in agricultural and managed forest ecology (Eds.) A Beemster, G Bollen, M Gerlagh, et al. (London: Elsevier Science Publishers) pp 297–300
Balmer A, Pastor V, Gamir J, et al. 2015 The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci. 20 443–452
Bonaterra A, Badosa E, Daranas N, et al. 2022 Bacteria as biological control agents of plant diseases. Microorganisms 10 1759
Article PubMed Central Google Scholar
Bradford M 1976 A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-binding. Anal. Biochem. 72 248–254
Bressano M, Massa AN, Arias RS, et al. 2019 Introgression of peanut smut resistance from landraces to elite peanut cultivars (Arachis hypogaea L). PLoS One 14 e0211920
Article PubMed Central Google Scholar
Cazón I, Paredes J and Rago A 2018 The biology of Thecaphora frezii smut and its effects on argentine peanut production; in Advances in plant pathology (Ed.) JN Kimatu (IntechOpen)
Conrath U, Beckers GJM, Flors V, et al. 2006 Priming: getting ready for battle. Mol. Plant Microbe Interact. 19 1062–1071
Conrath U 2011 Molecular aspects of defence priming. Trends Plant Sci. 16 524–531
DiRienzo JA, Casanoves F, Balzarini MG, et al. 2020 InfoStat versión 2020, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (http://www.infostat.com.ar)
Etesami H, Jeong BR and Glick BR 2023 Biocontrol of plant diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 126 102048
Figueredo MS, Tonelli ML, Taurian T, et al. 2014 Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. J. Biosci. 39 877–885
Figueredo MS, Tonelli ML, Ibáñez F, et al. 2017 Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol. Res. 197 65–73
Figueredo MS, Ibáñez F, Rodríguez J and Fabra A 2018 Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism. Plant Soil 433 353–361
Fira D, Dimkić I, Berić T, et al. 2018 Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285 44–55
Ganuza M, Pastor N, Erazo J, et al. 2018 Efficacy of the biocontrol agent Trichoderma harzianum ITEM 3636 against peanut smut, an emergent disease caused by Thecaphora frezzii. Eur. J. Plant Pathol. 151 257–262
Gebrie S 2016 Biotrophic fungi infection and plant defense mechanism. J. Plant Pathol. Microbiol. 7 378
He C, Clifton O, Felker-Quinn E, et al. 2021 Interactions between air pollution and terrestrial ecosystems: Perspectives on challenges and future directions. Bull. Am. Meteorol. Soc. 102 525–538
Illa C, Torassa M, Pérez MA and Pérez AA 2020 Efecto de biocontrol y promoción del crecimiento en maní por Trichoderma harzianum y Bacillus subtilis en condiciones controladas y campo. Rev. Mexicana Fitopatol. 38 119–131
Kearney M, Zuza M, Ibanez M, et al. 2021 Response of peanut (Arachis hypogaea L.) genotypes to smut (Thecaphora frezii) in the peanut growing region of Argentina. Peanut Sci. 48 61–67
Marinelli AD, March G and Rago A 1995 El carbón del maní Thecaphora frezii, sobre Arachis hypogaea L.; in Resúmenes VII Congreso de Micología y XVII Jornadas Argentinas de Micología. (Rosario, Santa Fe, Argentina) pp 134
Marinelli AD, March G, Oddino C, et al. 2010 El carbón de maní: De 1995 a 2010; in Resúmenes XXV Jornada Nacional del Maní (General Cabrera, Córdoba) pp 28–30
Marinelli AD, March GJ, Oddino CM 2017 Enfermedades fúngicas del maní; in El cultivo de maní en Córdoba (Eds.) EM Fernandez and O Giayetto (Río Cuarto: Universidad Nacional de Río Cuarto) pp 285–311
Marraro Acuña F, Cosa M and Wiemer A 2013 Carbón del maní: Histología, incidencia y severidad; in 28 Jornada Nacional del Maní (General Cabrera, Córdoba. Argentina) pp 26–27
Martínez‐Medina A, Flors V, Heil M, et al. 2016 Recognizing plant defense priming. Trends Plant Sci. 21818–822
Mauch-Mani B, Baccelli I, Luna E and Flors V 2017 Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68 485–512
Ongena M and Jacques P 2008 Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16 115–125
Paredes JA, Cazón LI, Bisonard EM and Rago A M 2015 Triazoles y estrobilurinas para el control de Thecaphora frezii; in XXX Jornada Nacional del Maní (General Cabrera, Córdoba, Argentina) pp 36–38
Paredes JA, Cazón LI, Bisonard EM, et al. 2018 Efecto de ingredientes activos fungicidas sobre la intensidad del carbón del maní; in XXXIII Jornada Nacional del Maní (General Cabrera, Córdoba, Argentina) pp 20–22
Paredes JA, Edwards Molina JP, Cazón LI, et al. 2021 Relationship between incidence and severity of 60 peanut smut and its regional distribution in the main growing region of Argentina. Trop. Plant Pathol. 47 1–12
Paredes JA 2022 Componentes del ciclo de patogénesis en la interacción del hongo Thecaphora frezii en el cultivo de maní, PhD tesis, Universidad Nacional de Córdoba, Córdoba, Argentina
Paredes JA, Guzzo MC, Monguillot JH, et al. 2024 Low water availability increases susceptibility to peanut smut (Thecaphora frezzii) in peanut crop. Plant Pathol. 73 316–325
Pieterse C, Zamioudis C, Berendsen R, et al. 2014 Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 52 347–375
Rabbee MF, Ali MS, Choi J, et al. 2019 Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24 1046
Article PubMed Central Google Scholar
Rago AM, Cazon LI, Paredes JA, et al. 2017 Peanut smut: from an emerging disease to an actual threat to Argentine peanut production. Plant Dis. 101 400–408
SISA 2022 Informe SISA Maní 2021-2022. Sistema de Información Simplificado Agrícola (https://www.argentina.gob.ar/inase)
Somasegaran P and Hoben HJ 1994 Quantifying the growth of rhizobia; In Handbook for Rhizobia (New York: Springer) pp 47–57
Sosa Alderete LG, Talano MA, Ibanez SG, et al. 2009 Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J. Biotech. 139 273–279
Tiwari M, Pati D, Mohapatra R, et al. 2022 The Impact of microbes in plant immunity and priming induced inheritance: a sustainable approach for crop protection. Plant Stress 4 100072
Tonelli ML, Taurian T, Ibáñez F, et al. 2010 Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J. Plant Pathol. 92 73–82
Tonelli ML, Furlan A, Taurian T, et al. 2011 Peanut priming induced by biocontrol agents. Physiol. Mol. Plant Pathol. 75 100–105
Valetti L, Paredes J A, Guzzo M C, et al. 2021 Efecto de la aplicación de inóculos individuales y mixtos de cepas de Trichoderma sp. con potencial promotor de crecimiento y biocontrol sobre Thecaphora frezii; in XXXVI Jornada Nacional del Maní (General Cabrera, Córdoba, Argentina) p 56
van Loon LC, Bakker PA and Pieterse CM 1998 Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36 453–483
Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, et al. 2018 The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev. Mexicana Fitopatol. 36 95–130
Yu Y, Gui Y, Li Z, et al. 2022 Induced systemic resistance for improving plant immunity by beneficial microbes. Plants 11 386
留言 (0)