Scoping review on the genotoxicity of silver nanoparticles in endodontics: therapeutic saviors or genetic saboteurs?

Drukteinis S, Rajasekharan S, Widbiller M. Advanced materials for clinical endodontic applications: current status and future directions. J Funct Biomater. 2024;15(2):31. https://doi.org/10.3390/jfb15020031.

Article  PubMed  PubMed Central  Google Scholar 

Setzer FC, Kratchman SI. Present status and future directions: surgical endodontics. Int Endod J. 2022;55(Suppl):41020–58. https://doi.org/10.1111/iej.13783.

Article  Google Scholar 

Koç C, Kamburoğlu K. Use of nanoparticles in endodontics. Adv Nanomater. 2022. https://doi.org/10.1007/978-3-031-11996-5_14.

Article  Google Scholar 

DaSilva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endod. 2013;39(2):249–53. https://doi.org/10.1016/j.joen.2012.11.008.

Article  PubMed  Google Scholar 

Potocnik J (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Communities Legis. 2011 27538-40

Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver nanoparticles and their therapeutic applications in endodontics: a narrative review. Pharmaceutics. 2023;15(3):715. https://doi.org/10.3390/pharmaceutics15030715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020;24(1):21. https://doi.org/10.1186/s40824-020-00198-z.

Article  PubMed  PubMed Central  Google Scholar 

Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen. 2016. https://doi.org/10.1016/j.mrgentox.2015.11.002.

Article  PubMed  Google Scholar 

Alkan H, Cigerci IH, Ali MM, et al. Cytotoxic and genotoxic evaluation of biosynthesized silver nanoparticles using moringa oleifera on MCF-7 and HUVEC cell lines. Plants (Basel). 2022;11(10):1293. https://doi.org/10.3390/plants11101293.

Article  CAS  PubMed  Google Scholar 

Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020. https://doi.org/10.2147/IJN.S246764.

Article  PubMed  PubMed Central  Google Scholar 

Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G. Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Diseases. 2012. https://doi.org/10.1186/1471-2334-12-s1-p60.

Article  Google Scholar 

Nasim I, Hemmanur S. Antibacterial efficacy of nanoparticle-incorporated root canal sealer against common endodontic pathogens—an in vitro study. J Pharmaceutical Res Int. 2020. https://doi.org/10.9734/jpri/2020/v32i1530627.

Article  Google Scholar 

Monisha K, Antinate Shilpa S, Anandan B, Hikku GS. Ethanolic curcumin/silver nanoparticles suspension as antibacterial coating mixture for gutta-percha and cotton fabric. Eng Res Express. 2023. https://doi.org/10.1088/2631-8695/acd74a.

Article  Google Scholar 

Alghofaily M, Alfraih J, Alsaud A, et al. The effectiveness of silver nanoparticles mixed with calcium hydroxide against candida albicans: an ex vivo analysis. Microorganisms. 2024. https://doi.org/10.3390/microorganisms12020289.

Article  PubMed  PubMed Central  Google Scholar 

Yadav S, Chandra A, Yadav R, Shakya V, Luqman S. Antimicrobial efficacy of silver nanoparticles with and without different antimicrobial agents against enterococcus faecalis and Candida albicans. Dental Hypotheses. 2017. https://doi.org/10.4103/denthyp.denthyp_17_17.

Article  Google Scholar 

Muhamad M, Ab Rahim N, Wan Omar WA, Nik Mohamed Kamal NNS. Cytotoxicity and genotoxicity of biogenic silver nanoparticles in A549 and BEAS-2B cell lines. Bioinorg Chem Appl. 2022. https://doi.org/10.1155/2022/8546079.

Article  PubMed  PubMed Central  Google Scholar 

AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w.

Article  CAS  PubMed  Google Scholar 

Oncu A, Huang Y, Amasya G, et al. Silver nanoparticles in endodontics: recent developments and applications. Restor Dent Endod. 2021;46(3): e38. https://doi.org/10.5395/rde.2021.46.e38.

Article  PubMed  PubMed Central  Google Scholar 

Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73. https://doi.org/10.7326/M18-0850.

Article  PubMed  Google Scholar 

Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: the QUIN. J Prosthet Dent. 2022. https://doi.org/10.1016/j.prosdent.2022.05.019.

Article  PubMed  Google Scholar 

Chavez-Andrade GM, Tanomaru-Filho M, Rodrigues EM, et al. Cytotoxicity, genotoxicity and antibacterial activity of poly(vinyl alcohol)-coated silver nanoparticles and farnesol as irrigating solutions. Arch Oral Biol. 2017. https://doi.org/10.1016/j.archoralbio.2017.09.028.

Article  PubMed  Google Scholar 

Teixeira ABV, Moreira NCS, Takahashi CS, et al. Cytotoxic and genotoxic effects in human gingival fibroblast and ions release of endodontic sealers incorporated with nanostructured silver vanadate. J Biomed Mater Res B Appl Biomater. 2021;109(9):1380–8. https://doi.org/10.1002/jbm.b.34798.

Article  CAS  PubMed  Google Scholar 

Samiei M, Shahi S, Ghasemi N, et al. Effect of different additives on genotoxicity of mineral trioxide aggregate. Iran Endod J. 2018;13(1):37–41. https://doi.org/10.22037/iej.v13i1.16913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brzovic V, Miletic I, Zeljezic D, et al. In vitro genotoxicity of root canal sealers. Int Endod J. 2009;42(3):253–63. https://doi.org/10.1111/j.1365-2591.2008.01510.x.

Article  CAS  PubMed  Google Scholar 

Siregar I, Permitasari R, Kamizar MA. Comparison of the potential genotoxicities of resin-, silicone-, and bioceramic-based root canal sealers against human lymphocytes. J Int Dent Med Res. 2019;12(1):88–94.

Google Scholar 

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. https://doi.org/10.2307/2529310.

Article  CAS  PubMed  Google Scholar 

Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014. https://doi.org/10.1186/1477-3155-12-5.

Article  Google Scholar 

Augustine R, Hasan A, Primavera R, et al. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun. 2020. https://doi.org/10.1016/j.mtcomm.2020.101692.

Article  Google Scholar 

Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic potential of nanoparticles: structural and functional modifications in DNA. Front Genet. 2021. https://doi.org/10.3389/fgene.2021.728250.

Article  PubMed  PubMed Central  Google Scholar 

Rim KT, Song SW, Kim HY. Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work. 2013;4(4):177–86. https://doi.org/10.1016/j.shaw.2013.07.006.

Article  PubMed  PubMed Central  Google Scholar 

Yu Z, Li Q, Wang J, et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett. 2020;15(1):115. https://doi.org/10.1186/s11671-020-03344-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Wang X, Wang M, et al. Mammalian cells exhibit a range of sensitivities to silver nanoparticles that are partially explicable by variations in antioxidant defense and metallothionein expression. Small. 2015;11(31):3797–805. https://doi.org/10.1002/smll.201500251.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif