Neuroprotective Effects of Hippeastrum elegans Extract: Anticholinesterase Effect In Silico and In Vivo Studies in the Scopolamine-Induced Memory Deficits Model in Rat

Bago Rožanković P, Rožanković M, Badžak J, Stojić M, Šušak Sporiš I (2021) Impact of donepezil and memantine on behavioral and psychological symptoms of Alzheimer disease: six-month open-label study. Cogn Behav Neurol 34:288–294. https://doi.org/10.1097/WNN.0000000000000285

Article  PubMed  Google Scholar 

Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS (2020) Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 152:154102. https://doi.org/10.1063/5.0005188

Article  CAS  PubMed  Google Scholar 

Barman B, Kushwaha A, Thakur MK (2022) Muscarinic acetylcholine receptors-mediated activation of PKC restores the hippocampal immediate early gene expression and CREB phosphorylation in scopolamine-induced amnesic mice. Mol Neurobiol 59:5722–5733. https://doi.org/10.1007/s12035-022-02940-1

Article  CAS  PubMed  Google Scholar 

Bezerra JR, de Souza Nascimento T, Tavares J, de Aguiar MSS, Maia MVV, de Andrade GM (2024) Neuroprotective effect of chlorogenic acid in an animal model of sporadic Alzheimer’s disease induced by streptozotocin. Mol Neurobiol. https://doi.org/10.1007/s12035-024-04299-x

Cheung J, Gary EN, Shiomi K, Rosenberry TL (2013) Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett 4:1091–1096. https://doi.org/10.1021/ml400304w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cimler R, Maresova P, Kuhnova J, Kuca K (2019) Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS ONE 14:e0210958. https://doi.org/10.1371/journal.pone.0210958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortes N, Posada-Duque RA, Alvarez R, Alzate F, Berkov S, Cardona-Gómez GP, Osorio E (2015) Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. Life Sci 122:42–50. https://doi.org/10.1016/j.lfs.2014.12.011

Article  CAS  PubMed  Google Scholar 

de Almeida WAM, de Andrade JP, Chacon DS, Lucas CR, Mariana E, de Santis FL, Guaratini T, Barbosa EG, Zuanazzi JA, Hallwass F, de Souza BW, de Paula OR, Giordani RB (2021) Isoquinoline alkaloids reduce beta-amyloid peptide toxicity in Caenorhabditis elegans. Nat Prod Res 35:4814–4818. https://doi.org/10.1080/14786419.2020.1727471

Article  CAS  PubMed  Google Scholar 

de Paiva JR, Souza ASQ, Pereira RCA, Ribeiro PRV, Filho EGA, Silva LMA, Zocolo GJ, Brito ES, Alves DR, Morais SM, Tavares J, Pinto FCL, Andrade GM, Pessoa ODL, Canuto KM (2021) Chemical composition and anticholinesterase activity of cultivated bulbs from Hippeastrum elegans, a potential tropical source of bioactive alkaloids. Phytochem Lett 43:27–34. https://doi.org/10.1016/j.phytol.2021.03.004

Article  CAS  Google Scholar 

DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodeg 14:32. https://doi.org/10.1186/s13024-019-0333-5

Article  Google Scholar 

Duan Q, Jia Y, Qin Y, Jin Y, Hu H, Chen J (2020) Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered 11:801–810. https://doi.org/10.1080/21655979.2020.1795424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) a new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Galimberti D, Scarpini E (2016) Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin Investig Drugs 25:1181–1187. https://doi.org/10.1080/13543784.2016.1216972

Article  CAS  PubMed  Google Scholar 

Giordani RB, de Andrade JP, Verli H, Dutilh JH, Henriques AT, Berkov S, Bastida J, Zuanazzi JÁ (2011) Alkaloids from Hippeastrum morelianum Lam. (Amaryllidaceae). Magn Reson Chem 49:668–672. https://doi.org/10.1002/mrc.2794

Article  CAS  PubMed  Google Scholar 

Gomez-Ramirez J, Wu J (2014) Network-based biomarkers in Alzheimer’s disease: review and future directions. Front Aging Neurosci 6:12. https://doi.org/10.3389/fnagi.2014.00012

Article  PubMed  PubMed Central  Google Scholar 

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933. https://doi.org/10.1093/brain/awy132

Article  PubMed  PubMed Central  Google Scholar 

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

Article  CAS  PubMed  Google Scholar 

Hoang THX, Ho DV, Van Phan K, Le QV, Raal A, Nguyen HT (2020) Effects of Hippeastrum reticulatum on memory, spatial learning and object recognition in a scopolamine-induced animal model of Alzheimer’s disease. Pharm Biol 58:1098–1104. https://doi.org/10.1080/13880209.2020.1841810

Article  CAS  PubMed  Google Scholar 

Ishola IO, Jacinta AA, Adeyemi OO (2019) Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 34:979–989. https://doi.org/10.1007/s11011-019-00409-0

Article  CAS  PubMed  Google Scholar 

Isoma K, Ishikawa M, Ohta M, Ogawa Y, Hasegawa H, Kohda T, Kamei J (2002) Effects of T-82, a new quinoline derivative, on cholinesterase activity and extracellular acetylcholine concentration in rat brain. Jpn J Pharmacol 88:206–212. https://doi.org/10.1254/jjp.88.206

Article  PubMed  Google Scholar 

Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK (2019) Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimers Dement (NY) 5:637–643. https://doi.org/10.1016/j.trci.2019.09.009

Article  Google Scholar 

Kita Y, Ago Y, Higashino K, Asada K, Takano E, Takuma K, Matsuda T (2014) Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int J Neuropsychopharmacol 17:1957–1968. https://doi.org/10.1017/S1461145714000613

Article  CAS  PubMed  Google Scholar 

Likhtik E, Johansen JP (2019) Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 22:1586–1597. https://doi.org/10.1038/s41593-019-0503-3

Article  CAS  PubMed  Google Scholar 

López S, Bastida J, Viladomat F, Codina C (2002) Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci 71:2521–2529. https://doi.org/10.1016/S0024-3205(02)02034-9

Article  PubMed  Google Scholar 

Martini F, Pesarico AP, Brüning CA, Zeni G, Nogueira CW (2018) Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice. J Cell Biochem 119:5598–5608. https://doi.org/10.1002/jcb.26731

Article  CAS  PubMed  Google Scholar 

Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics, Chapter 8:Unit 8.14. https://doi.org/10.1002/0471250953.bi0814s24

Oliveira PS, Saccon TD, da Silva TM, Costa MZ, Dutra FS, de Vasconcelos A, Lencina CL, Stefanello FM, Barschak AG (2013) Green juice as a protector against reactive species in rats. Nutr Hosp 28:1407–1412. https://doi.org/10.3305/nh.2013.28.5.6505

Article  CAS  PubMed  Google Scholar 

Ortiz JE, Garro A, Pigni NB, Agüero MB, Roitman G, Slanis A, Enriz RD, Feresin GE, Bastida J, Tapia A (2018) Cholinesterase-inhibitory effect and in silico analysis of alkaloids from bulbs of Hieronymiella species. Phytomedicine 39:66–74. https://doi.org/10.1016/j.phymed.2017.12.020

Article  CAS  PubMed  Google Scholar 

Pakaski M, Kalman J (2008) Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int 53:103–111. https://doi.org/10.1016/j.neuint.2008.06.005

Article 

留言 (0)

沒有登入
gif