Cobra Venom: From Envenomation Syndromes to Therapeutic Innovations

Abdullah NAH, Sainik NQAV, Esa E et al (2022) Neuroprotective effect of phospholipase A2 from Malaysian Naja sumatrana venom against H2O2-induced cell damage and apoptosis. Front Pharmacol 13:935418. https://doi.org/10.3389/fphar.2022.935418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullahi ZU, Musa SS, Abu-Odah H et al (2023) Bactericidal effects of Snake Venom Phospholipases A2: a systematic review and analysis of Minimum Inhibitory Concentration. Physiologia 3:30–42. https://doi.org/10.3390/physiologia3010003

Article  Google Scholar 

Abid I, Jemel I, Alonazi M, Ben Bacha A (2020) A New Group II phospholipase A2 from Walterinnesia aegyptia Venom with Antimicrobial, Antifungal, and cytotoxic potential. Processes 8:1560. https://doi.org/10.3390/pr8121560

Article  CAS  Google Scholar 

Afroz A, Siddiquea BN, Chowdhury HA et al (2024) Snakebite envenoming: a systematic review and meta-analysis of global morbidity and mortality. PLoS Negl Trop Dis 18:e0012080. https://doi.org/10.1371/journal.pntd.0012080

Article  PubMed  PubMed Central  Google Scholar 

Alangode A, Rajan K, Nair BG (2020) Snake antivenom: challenges and alternate approaches. Biochem Pharmacol 181:114135. https://doi.org/10.1016/j.bcp.2020.114135

Article  CAS  PubMed  Google Scholar 

ALfaifi MS, ALOtaibi AE, AlQahtani SA et al (2020) Cobra snakebite mimicking brain death treated with a novel combination of polyvalent snake antivenom and anticholinesterase. Am J Emerg Med 38. https://doi.org/10.1016/j.ajem.2020.05.111. :2490.e5-2490.e7

Alshammari AM, Badry A, Aloufi BH, El-Abd E (2022) Molecular phylogeny of Walterinnesia aegyptia (Reptilia, Elapidae) isolated from Ha’il Province, Saudi Arabia. Open J Appl Sci 12:1661–1672. https://doi.org/10.4236/ojapps.2022.1210113

Article  CAS  Google Scholar 

Attarde SS, Pandit SV (2020) Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J Venom Anim Toxins Incl Trop Dis 26:e20190047. https://doi.org/10.1590/1678-9199-JVATITD-2019-0047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bates M (2022) Venom-inspired medicine: ancient chemicals offer Novel solutions. IEEE Pulse 13:18–21. https://doi.org/10.1109/MPULS.2022.3145607

Article  PubMed  Google Scholar 

Bocian A, Hus KK (2020) Antibacterial properties of snake venom components. Chem Pap 74:407–419. https://doi.org/10.1007/s11696-019-00939-y

Article  CAS  Google Scholar 

Bohlen CJ, Chesler AT, Sharif-Naeini R et al (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414. https://doi.org/10.1038/nature10607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brzezicki MA, Zakowicz PT (2018) Mambalgins, the venom-origin peptides as a potentially Novel Group of Analgesics: Mini Review. CNS Neurol Disord Drug Targets 17:87–97. https://doi.org/10.2174/1871527317666171221110419

Article  CAS  PubMed  Google Scholar 

Chanda A, Patra A, Kalita B, Mukherjee AK (2018) Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Rev Proteomics 15:949–961. https://doi.org/10.1080/14789450.2018.1538799

Article  CAS  PubMed  Google Scholar 

Chanda A, Kalita B, Patra A et al (2019) Proteomic analysis and antivenomics study of western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics 16:171–184. https://doi.org/10.1080/14789450.2019.1559735

Article  CAS  PubMed  Google Scholar 

Chbel A, Lafnoune A, Nait Irahal I, Bourhim N (2024) Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - progress or setback? Biochimie. https://doi.org/10.1016/j.biochi.2024.07.004

Article  PubMed  Google Scholar 

Chen Z-X, Zhang H-L, Gu Z-L et al (2006) A long-form alpha-neurotoxin from cobra venom produces potent opioid-independent analgesia. Acta Pharmacol Sin 27:402–408. https://doi.org/10.1111/j.1745-7254.2006.00293.x

Article  CAS  PubMed  Google Scholar 

Chen L-W, Kao P-H, Fu Y-S et al (2011a) Bactericidal effect of Naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides 32:1755–1763. https://doi.org/10.1016/j.peptides.2011.06.026

Article  CAS  PubMed  Google Scholar 

Chen L-W, Kao P-H, Fu Y-S et al (2011b) Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. Toxicon 58:46–53. https://doi.org/10.1016/j.toxicon.2011.04.021

Article  CAS  PubMed  Google Scholar 

Chong HP, Tan KY, Tan CH (2020) Cytotoxicity of Snake venoms and cytotoxins from two southeast Asian cobras (Naja sumatrana, Naja kaouthia): exploration of Anticancer potential, selectivity, and cell death mechanism. Front Mol Biosci 7:583587. https://doi.org/10.3389/fmolb.2020.583587

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chong HP, Tan KY, Liu B-S et al (2022) Cytotoxicity of venoms and cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins 14:334. https://doi.org/10.3390/toxins14050334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conlon JM, Attoub S, Musale V et al (2020) Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon: X 6:100030. https://doi.org/10.1016/j.toxcx.2020.100030

Article  CAS  PubMed  Google Scholar 

Coulter-Parkhill A, McClean S, Gault VA, Irwin N (2021) Therapeutic potential of peptides derived from animal venoms: current views and emerging drugs for diabetes. Clin Med Insights Endocrinol Diabetes 14:11795514211006071. https://doi.org/10.1177/11795514211006071

Article  PubMed  PubMed Central  Google Scholar 

Darracq MA, Cantrell FL, Klauk B, Thornton SL (2015) A chance to cut is not always a chance to cure- fasciotomy in the treatment of rattlesnake envenomation: a retrospective poison center study. Toxicon 101:23–26. https://doi.org/10.1016/j.toxicon.2015.04.014

Article  CAS  PubMed  Google Scholar 

Derakhshani A, Silvestris N, Hajiasgharzadeh K et al (2020a) Expression and characterization of a novel recombinant cytotoxin II from Naja naja Oxiana venom: a potential treatment for breast cancer. Int J Biol Macromol 162:1283–1292. https://doi.org/10.1016/j.ijbiomac.2020.06.130

Article  CAS  PubMed  Google Scholar 

Derakhshani A, Silvestris N, Hemmat N et al (2020b) Targeting TGF-β-Mediated SMAD signaling pathway via Novel recombinant cytotoxin II: a potent protein from Naja naja Oxiana Venom in Melanoma. Molecules 25:5148. https://doi.org/10.3390/molecules25215148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diniz-Sousa R, Caldeira CA, da Pereira S SS, et al (2023) Therapeutic applications of snake venoms: an invaluable potential of new drug candidates. Int J Biol Macromol 238:124357. https://doi.org/10.1016/j.ijbiomac.2023.124357

Article  CAS  PubMed  Google Scholar 

Faiz MA, Ahsan MF, Ghose A et al (2017) Bites by the Monocled Cobra, Naja kaouthia, in Chittagong Division, Bangladesh: Epidemiology, Clinical Features of Envenoming and Management of 70 Identified Cases. Am J Trop Med Hyg 96:876–884. https://doi.org/10.4269/ajtmh.16-0842

Fallahi N, Shahbazzadeh D, Maleki F et al (2020) The in vitro study of anti-leishmanial effect of Naja naja Oxiana Snake Venom on Leishmania major. Infect Disord Drug Targets 20:913–919. https://doi.org/10.2174/1871526520666200106121839

Article  CAS  PubMed  Google Scholar 

Farzad R, Gholami A, Hayati Roodbari N, Shahbazzadeh D (2020) The anti-rabies activity of Caspian cobra venom. Toxicon 186:175–181. https://doi.org/10.1016/j.toxicon.2020.08.014

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif