Abdullah NAH, Sainik NQAV, Esa E et al (2022) Neuroprotective effect of phospholipase A2 from Malaysian Naja sumatrana venom against H2O2-induced cell damage and apoptosis. Front Pharmacol 13:935418. https://doi.org/10.3389/fphar.2022.935418
Article CAS PubMed PubMed Central Google Scholar
Abdullahi ZU, Musa SS, Abu-Odah H et al (2023) Bactericidal effects of Snake Venom Phospholipases A2: a systematic review and analysis of Minimum Inhibitory Concentration. Physiologia 3:30–42. https://doi.org/10.3390/physiologia3010003
Abid I, Jemel I, Alonazi M, Ben Bacha A (2020) A New Group II phospholipase A2 from Walterinnesia aegyptia Venom with Antimicrobial, Antifungal, and cytotoxic potential. Processes 8:1560. https://doi.org/10.3390/pr8121560
Afroz A, Siddiquea BN, Chowdhury HA et al (2024) Snakebite envenoming: a systematic review and meta-analysis of global morbidity and mortality. PLoS Negl Trop Dis 18:e0012080. https://doi.org/10.1371/journal.pntd.0012080
Article PubMed PubMed Central Google Scholar
Alangode A, Rajan K, Nair BG (2020) Snake antivenom: challenges and alternate approaches. Biochem Pharmacol 181:114135. https://doi.org/10.1016/j.bcp.2020.114135
Article CAS PubMed Google Scholar
ALfaifi MS, ALOtaibi AE, AlQahtani SA et al (2020) Cobra snakebite mimicking brain death treated with a novel combination of polyvalent snake antivenom and anticholinesterase. Am J Emerg Med 38. https://doi.org/10.1016/j.ajem.2020.05.111. :2490.e5-2490.e7
Alshammari AM, Badry A, Aloufi BH, El-Abd E (2022) Molecular phylogeny of Walterinnesia aegyptia (Reptilia, Elapidae) isolated from Ha’il Province, Saudi Arabia. Open J Appl Sci 12:1661–1672. https://doi.org/10.4236/ojapps.2022.1210113
Attarde SS, Pandit SV (2020) Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J Venom Anim Toxins Incl Trop Dis 26:e20190047. https://doi.org/10.1590/1678-9199-JVATITD-2019-0047
Article CAS PubMed PubMed Central Google Scholar
Bates M (2022) Venom-inspired medicine: ancient chemicals offer Novel solutions. IEEE Pulse 13:18–21. https://doi.org/10.1109/MPULS.2022.3145607
Bocian A, Hus KK (2020) Antibacterial properties of snake venom components. Chem Pap 74:407–419. https://doi.org/10.1007/s11696-019-00939-y
Bohlen CJ, Chesler AT, Sharif-Naeini R et al (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414. https://doi.org/10.1038/nature10607
Article CAS PubMed PubMed Central Google Scholar
Brzezicki MA, Zakowicz PT (2018) Mambalgins, the venom-origin peptides as a potentially Novel Group of Analgesics: Mini Review. CNS Neurol Disord Drug Targets 17:87–97. https://doi.org/10.2174/1871527317666171221110419
Article CAS PubMed Google Scholar
Chanda A, Patra A, Kalita B, Mukherjee AK (2018) Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Rev Proteomics 15:949–961. https://doi.org/10.1080/14789450.2018.1538799
Article CAS PubMed Google Scholar
Chanda A, Kalita B, Patra A et al (2019) Proteomic analysis and antivenomics study of western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics 16:171–184. https://doi.org/10.1080/14789450.2019.1559735
Article CAS PubMed Google Scholar
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N (2024) Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - progress or setback? Biochimie. https://doi.org/10.1016/j.biochi.2024.07.004
Chen Z-X, Zhang H-L, Gu Z-L et al (2006) A long-form alpha-neurotoxin from cobra venom produces potent opioid-independent analgesia. Acta Pharmacol Sin 27:402–408. https://doi.org/10.1111/j.1745-7254.2006.00293.x
Article CAS PubMed Google Scholar
Chen L-W, Kao P-H, Fu Y-S et al (2011a) Bactericidal effect of Naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides 32:1755–1763. https://doi.org/10.1016/j.peptides.2011.06.026
Article CAS PubMed Google Scholar
Chen L-W, Kao P-H, Fu Y-S et al (2011b) Membrane-damaging activity of Taiwan cobra cardiotoxin 3 is responsible for its bactericidal activity. Toxicon 58:46–53. https://doi.org/10.1016/j.toxicon.2011.04.021
Article CAS PubMed Google Scholar
Chong HP, Tan KY, Tan CH (2020) Cytotoxicity of Snake venoms and cytotoxins from two southeast Asian cobras (Naja sumatrana, Naja kaouthia): exploration of Anticancer potential, selectivity, and cell death mechanism. Front Mol Biosci 7:583587. https://doi.org/10.3389/fmolb.2020.583587
Article CAS PubMed PubMed Central Google Scholar
Chong HP, Tan KY, Liu B-S et al (2022) Cytotoxicity of venoms and cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins 14:334. https://doi.org/10.3390/toxins14050334
Article CAS PubMed PubMed Central Google Scholar
Conlon JM, Attoub S, Musale V et al (2020) Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon: X 6:100030. https://doi.org/10.1016/j.toxcx.2020.100030
Article CAS PubMed Google Scholar
Coulter-Parkhill A, McClean S, Gault VA, Irwin N (2021) Therapeutic potential of peptides derived from animal venoms: current views and emerging drugs for diabetes. Clin Med Insights Endocrinol Diabetes 14:11795514211006071. https://doi.org/10.1177/11795514211006071
Article PubMed PubMed Central Google Scholar
Darracq MA, Cantrell FL, Klauk B, Thornton SL (2015) A chance to cut is not always a chance to cure- fasciotomy in the treatment of rattlesnake envenomation: a retrospective poison center study. Toxicon 101:23–26. https://doi.org/10.1016/j.toxicon.2015.04.014
Article CAS PubMed Google Scholar
Derakhshani A, Silvestris N, Hajiasgharzadeh K et al (2020a) Expression and characterization of a novel recombinant cytotoxin II from Naja naja Oxiana venom: a potential treatment for breast cancer. Int J Biol Macromol 162:1283–1292. https://doi.org/10.1016/j.ijbiomac.2020.06.130
Article CAS PubMed Google Scholar
Derakhshani A, Silvestris N, Hemmat N et al (2020b) Targeting TGF-β-Mediated SMAD signaling pathway via Novel recombinant cytotoxin II: a potent protein from Naja naja Oxiana Venom in Melanoma. Molecules 25:5148. https://doi.org/10.3390/molecules25215148
Article CAS PubMed PubMed Central Google Scholar
Diniz-Sousa R, Caldeira CA, da Pereira S SS, et al (2023) Therapeutic applications of snake venoms: an invaluable potential of new drug candidates. Int J Biol Macromol 238:124357. https://doi.org/10.1016/j.ijbiomac.2023.124357
Article CAS PubMed Google Scholar
Faiz MA, Ahsan MF, Ghose A et al (2017) Bites by the Monocled Cobra, Naja kaouthia, in Chittagong Division, Bangladesh: Epidemiology, Clinical Features of Envenoming and Management of 70 Identified Cases. Am J Trop Med Hyg 96:876–884. https://doi.org/10.4269/ajtmh.16-0842
Fallahi N, Shahbazzadeh D, Maleki F et al (2020) The in vitro study of anti-leishmanial effect of Naja naja Oxiana Snake Venom on Leishmania major. Infect Disord Drug Targets 20:913–919. https://doi.org/10.2174/1871526520666200106121839
Article CAS PubMed Google Scholar
Farzad R, Gholami A, Hayati Roodbari N, Shahbazzadeh D (2020) The anti-rabies activity of Caspian cobra venom. Toxicon 186:175–181. https://doi.org/10.1016/j.toxicon.2020.08.014
留言 (0)