Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers

Qu QR, Tang LY, Liu Q, Long YY, Wu X, Xu M, et al. Proteomic Analysis of the Sphincter in a Neurogenic Bladder Caused by T10 Spinal Cord Injury. J Integr Neurosci. 2022;21:147.

Article  PubMed  Google Scholar 

Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, et al. Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regen Res. 2023;18:889–94.

Article  CAS  PubMed  Google Scholar 

García-Rudolph A, Wright MA, Devilleneuve EA, Castillo E, Opisso E, Hernandez-Pena E. Pressure ulcers acquired during inpatient rehabilitation after spinal cord injury, characterization and predictors: A 15-years’ experience. NeuroRehabilitation. 2024;54:457–72.

Article  PubMed  Google Scholar 

Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020;371:m3596.

Article  PubMed  Google Scholar 

Chen YC, Kuo HC. Risk factors of video urodynamics and bladder management for long-term complications in patients with chronic spinal cord injury. Sci Rep. 2024;14:12632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018;113:e345–e363.

Article  PubMed  Google Scholar 

Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today. 2021;26:1642–55.

Article  CAS  PubMed  Google Scholar 

Jiang B, Sun D, Sun H, Ru X, Liu H, Ge S, et al. Prevalence, Incidence, and External Causes of Traumatic Spinal Cord Injury in China: A Nationally Representative Cross-Sectional Survey. Front Neurol. 2021;12:784647.

Article  PubMed  Google Scholar 

Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells. 2022;11:2692.

De la Garza Ramos R, Nakhla J, Nasser R, Jada A, Sciubba DM, Kinon MD, et al. The Impact of Hospital Teaching Status on Timing of Intervention, Inpatient Morbidity, and Mortality After Surgery for Vertebral Column Fractures with Spinal Cord Injury. World Neurosurg. 2017;99:140–4.

Article  PubMed  Google Scholar 

Xu B, Fang J, Wang J, Jin X, Liu S, Song K, et al. Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother. 2023;165:115165.

Article  CAS  PubMed  Google Scholar 

Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci. 2023;24:7159.

Ma D, Shen H, Chen F, Liu W, Zhao Y, Xiao Z, et al. Inflammatory Microenvironment-Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Adv Health Mater. 2022;11:e2201319.

Article  Google Scholar 

Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, et al. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther. 2023;29:1094–108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration. Cells. 2023;12:853.

Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci. 2022;79:161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, et al. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci. 2020;23:337–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci. 2022;16:969002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, et al. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma. 2021;38:1203–24.

Article  PubMed  Google Scholar 

Li W, Zhao X, Zhang R, Liu X, Qi Z, Zhang Y, et al. Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury. Neural Regen Res. 2023;18:2474–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bretheau F, Castellanos-Molina A, Bélanger D, Kusik M, Mailhot B, Boisvert A, et al. The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun. 2022;13:5786.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirsch JE. Does the H index have predictive power? Proc Natl Acad Sci USA. 2007;104:19193–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Earnhardt JN, Streit WJ, Anderson DK, O’Steen WA, Nick HS. Induction of manganese superoxide dismutase in acute spinal cord injury. J Neurotrauma. 2002;19:1065–79.

Article  CAS  PubMed  Google Scholar 

Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, et al. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther. 2024;18:1399–414.

Article  PubMed  PubMed Central  Google Scholar 

Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7:366–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, et al. Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci. 2011;31:9910–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Lei Z, Ritzel RM, He J, Li H, Choi HMC, et al. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice. Theranostics. 2022;12:5364–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat. 2024;251:152180.

Article  PubMed  Google Scholar 

Xie DM, Sun C, Tu Q, Li S, Zhang Y, Mei X, et al. Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. J Tissue Eng. 2023;14:20417314231180033.

Article  PubMed  PubMed Central  Google Scholar 

Schmidt J, Quintá HR. Mitochondrial dysfunction as a target in spinal cord injury: intimate correlation between pathological processes and therapeutic approaches. Neural Regen Res. 2023;18:2161–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol. 2024;15:1330678.

Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, et al. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med. 2021;16:465–76.

Article  CAS  PubMed  Google Scholar 

Zhang C, Kang J, Zhang X, Zhang Y, Huang N, Ning B. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother. 2022;153:113500.

Article  CAS  PubMed  Google Scholar 

Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells. 2019;8:1424.

Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep. 2024;14:6553.

留言 (0)

沒有登入
gif