Qu QR, Tang LY, Liu Q, Long YY, Wu X, Xu M, et al. Proteomic Analysis of the Sphincter in a Neurogenic Bladder Caused by T10 Spinal Cord Injury. J Integr Neurosci. 2022;21:147.
Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, et al. Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regen Res. 2023;18:889–94.
Article CAS PubMed Google Scholar
García-Rudolph A, Wright MA, Devilleneuve EA, Castillo E, Opisso E, Hernandez-Pena E. Pressure ulcers acquired during inpatient rehabilitation after spinal cord injury, characterization and predictors: A 15-years’ experience. NeuroRehabilitation. 2024;54:457–72.
Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020;371:m3596.
Chen YC, Kuo HC. Risk factors of video urodynamics and bladder management for long-term complications in patients with chronic spinal cord injury. Sci Rep. 2024;14:12632.
Article CAS PubMed PubMed Central Google Scholar
Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018;113:e345–e363.
Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today. 2021;26:1642–55.
Article CAS PubMed Google Scholar
Jiang B, Sun D, Sun H, Ru X, Liu H, Ge S, et al. Prevalence, Incidence, and External Causes of Traumatic Spinal Cord Injury in China: A Nationally Representative Cross-Sectional Survey. Front Neurol. 2021;12:784647.
Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells. 2022;11:2692.
De la Garza Ramos R, Nakhla J, Nasser R, Jada A, Sciubba DM, Kinon MD, et al. The Impact of Hospital Teaching Status on Timing of Intervention, Inpatient Morbidity, and Mortality After Surgery for Vertebral Column Fractures with Spinal Cord Injury. World Neurosurg. 2017;99:140–4.
Xu B, Fang J, Wang J, Jin X, Liu S, Song K, et al. Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother. 2023;165:115165.
Article CAS PubMed Google Scholar
Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci. 2023;24:7159.
Ma D, Shen H, Chen F, Liu W, Zhao Y, Xiao Z, et al. Inflammatory Microenvironment-Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Adv Health Mater. 2022;11:e2201319.
Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, et al. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther. 2023;29:1094–108.
Article CAS PubMed PubMed Central Google Scholar
Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration. Cells. 2023;12:853.
Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci. 2022;79:161.
Article CAS PubMed PubMed Central Google Scholar
Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, et al. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci. 2020;23:337–50.
Article CAS PubMed PubMed Central Google Scholar
Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci. 2022;16:969002.
Article CAS PubMed PubMed Central Google Scholar
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, et al. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma. 2021;38:1203–24.
Li W, Zhao X, Zhang R, Liu X, Qi Z, Zhang Y, et al. Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury. Neural Regen Res. 2023;18:2474–81.
Article CAS PubMed PubMed Central Google Scholar
Bretheau F, Castellanos-Molina A, Bélanger D, Kusik M, Mailhot B, Boisvert A, et al. The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun. 2022;13:5786.
Article CAS PubMed PubMed Central Google Scholar
Hirsch JE. Does the H index have predictive power? Proc Natl Acad Sci USA. 2007;104:19193–8.
Article CAS PubMed PubMed Central Google Scholar
Earnhardt JN, Streit WJ, Anderson DK, O’Steen WA, Nick HS. Induction of manganese superoxide dismutase in acute spinal cord injury. J Neurotrauma. 2002;19:1065–79.
Article CAS PubMed Google Scholar
Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, et al. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther. 2024;18:1399–414.
Article PubMed PubMed Central Google Scholar
Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7:366–77.
Article CAS PubMed PubMed Central Google Scholar
Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, et al. Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci. 2011;31:9910–22.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Lei Z, Ritzel RM, He J, Li H, Choi HMC, et al. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice. Theranostics. 2022;12:5364–88.
Article CAS PubMed PubMed Central Google Scholar
Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat. 2024;251:152180.
Xie DM, Sun C, Tu Q, Li S, Zhang Y, Mei X, et al. Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. J Tissue Eng. 2023;14:20417314231180033.
Article PubMed PubMed Central Google Scholar
Schmidt J, Quintá HR. Mitochondrial dysfunction as a target in spinal cord injury: intimate correlation between pathological processes and therapeutic approaches. Neural Regen Res. 2023;18:2161–6.
Article CAS PubMed PubMed Central Google Scholar
Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol. 2024;15:1330678.
Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, et al. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med. 2021;16:465–76.
Article CAS PubMed Google Scholar
Zhang C, Kang J, Zhang X, Zhang Y, Huang N, Ning B. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother. 2022;153:113500.
Article CAS PubMed Google Scholar
Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells. 2019;8:1424.
Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep. 2024;14:6553.
留言 (0)