Impaired brain ability of older adults to transit and persist to latent states with well-organized structures at wakeful rest

Viviano RP, Raz N, Yuan P, Damoiseaux JS. Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiol Aging 2017;59:135–43. https://doi.org/10.1016/j.neurobiolaging.2017.08.003.

Ezaki T, Sakaki M, Watanabe T, Masuda N. A ge-related changes in the ease of dynamical transitions in human brain activity. Hum Brain Mapp. 2018;39:2673–88. https://doi.org/10.1002/hbm.24033.

Article  PubMed  PubMed Central  Google Scholar 

Yin W, Li T, Hung S-C, Zhang H, Wang L, Shen D, et al. The emergence of a functionally flexible brain during early infancy. Proc Natl Acad Sci USA. 2020;117:23904–13. https://doi.org/10.1073/pnas.2002645117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Escrichs A, Biarnes C, Garre-Olmo J, Fernández-Real JM, Ramos R, Pamplona R, et al. Whole-brain dynamics in aging: disruptions in functional connectivity and the role of the rich club. Cereb Cortex. 2021;31:2466–81. https://doi.org/10.1093/cercor/bhaa367.

Article  PubMed  Google Scholar 

Rieck JR, Baracchini G, Nichol D, Abdi H, Grady CL. Reconfiguration and dedifferentiation of functional networks during cognitive control across the adult lifespan. Neurobiol Aging. 2021;106:80–94. https://doi.org/10.1016/j.neurobiolaging.2021.03.019.

Article  CAS  PubMed  Google Scholar 

Kupis L, Goodman ZT, Kornfeld S, Hoang S, Romero C, Dirks B, et al. Brain dynamics underlying cognitive flexibility across the lifespan. Cereb Cortex. 2021;31:5263–74. https://doi.org/10.1093/cercor/bhab156.

Article  PubMed  PubMed Central  Google Scholar 

Lei T, Liao X, Chen X, Zhao T, Xu Y, Xia M, et al. Progressive stabilization of brain network dynamics during childhood and adolescence. Cereb Cortex. 2022;32:1024–39. https://doi.org/10.1093/cercor/bhab263.

Article  PubMed  Google Scholar 

Naik S, Banerjee A, Bapi RS, Deco G, Roy D. Metastability in senescence. Trends Cogn Sci. 2017;21:509–21. https://doi.org/10.1016/j.tics.2017.04.007.

Article  PubMed  Google Scholar 

Malagurski B, Liem F, Oschwald J, Mérillat S, Jäncke L. Longitudinal functional brain network reconfiguration in healthy aging. Hum Brain Mapp. 2020;41:4829–45. https://doi.org/10.1002/hbm.25161.

Article  PubMed  PubMed Central  Google Scholar 

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11. https://doi.org/10.1038/nrn2201.

Article  CAS  PubMed  Google Scholar 

Garrett DD, Kovacevic N, McIntosh AR, Grady CL. The importance of being variable. J Neurosci. 2011;31:4496–503. https://doi.org/10.1523/JNEUROSCI.5641-10.2011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Probert Smith PJ, et al. Fast transient networks in spontaneous human brain activity. eLife. 2014;3:e01867. https://doi.org/10.7554/eLife.01867.

Article  PubMed  PubMed Central  Google Scholar 

Uddin LQ. Bring the noise: reconceptualizing spontaneous neural activity. Trends Cogn Sci. 2020;24:734–46. https://doi.org/10.1016/j.tics.2020.06.003.

Article  PubMed  PubMed Central  Google Scholar 

Saggar M, Shine JM, Liégeois R, Dosenbach NUF, Fair D. Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest. Nat Commun. 2022;13:4791. https://doi.org/10.1038/s41467-022-32381-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 2004;27:712–9. https://doi.org/10.1016/j.tins.2004.10.007.

Article  CAS  PubMed  Google Scholar 

Cole MW, Ito T, Bassett DS, Schultz DH. Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci. 2016;19:1718–26. https://doi.org/10.1038/nn.4406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hearne LJ, Cocchi L, Zalesky A, Mattingley JB. Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning. J Neurosci. 2017;37:8399–411. https://doi.org/10.1523/JNEUROSCI.0485-17.2017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alderson TH, Bokde ALW, Kelso JAS, Maguire L, Coyle D. Metastable neural dynamics underlies cognitive performance across multiple behavioural paradigms. Hum Brain Mapp. 2020;41:3212–34. https://doi.org/10.1002/hbm.25009.

Article  PubMed  PubMed Central  Google Scholar 

Fransson P, Strindberg M. Brain network integration, segregation and quasi-periodic activation and deactivation during tasks and rest. Neuroimage. 2023;268:119890. https://doi.org/10.1016/j.neuroimage.2023.119890.

Article  PubMed  Google Scholar 

Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12:43–56. https://doi.org/10.1038/nrn2961.

Article  CAS  PubMed  Google Scholar 

Keerativittayayut R, Aoki R, Sarabi MT, Jimura K, Nakahara K. Large-scale network integration in the human brain tracks temporal fluctuations in memory encoding performance. eLife 2018;7:e32696. https://doi.org/10.7554/eLife.32696.

Shine JM, Poldrack RA. Principles of dynamic network reconfiguration across diverse brain states. Neuroimage. 2018;180:396–405. https://doi.org/10.1016/j.neuroimage.2017.08.010.

Article  PubMed  Google Scholar 

Ito T, Yang GR, Laurent P, Schultz DH, Cole MW. Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior. Nat Commun. 2022;13:673. https://doi.org/10.1038/s41467-022-28323-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latifi S, Carmichael ST. The emergence of multiscale connectomics-based approaches in stroke recovery. Trends in Neurosciences 2024;S0166223624000158. https://doi.org/10.1016/j.tins.2024.01.003.

Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA. 2005;102:13773–8. https://doi.org/10.1073/pnas.0503610102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003.

Article  PubMed  Google Scholar 

Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49. https://doi.org/10.1038/nrn3214.

Article  CAS  PubMed  Google Scholar 

Lynn CW, Bassett DS. The physics of brain network structure, function and control. Nat Rev Phys. 2019;1:318–32. https://doi.org/10.1038/s42254-019-0040-8.

Article  Google Scholar 

Bertolero MA, Yeo BTT, D’Esposito M. The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci USA. 2015;112:E6798–807. https://doi.org/10.1073/pnas.1510619112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol. 2016;67:613–40. https://doi.org/10.1146/annurev-psych-122414-033634.

Article  PubMed  Google Scholar 

Bertolero MA, Yeo BTT, Bassett DS, D’Esposito M. A mechanistic model of connector hubs, modularity and cognition. Nat Hum Behav. 2018;2:765–77. https://doi.org/10.1038/s41562-018-0420-6.

Article  PubMed 

留言 (0)

沒有登入
gif