Real-time automated quality control for quantitative MRI

Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold AM (2013) Magnetic resonance fingerprinting. Nature 495:187–92

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Chen MH, Baluyot KR, Potts TM, Jimenez J, Lin W (2019) Mr fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage 186:782–793. https://doi.org/10.1016/j.neuroimage.2018.11.038

Article  PubMed  Google Scholar 

MacAskill CJ, Markley M, Farr S, Parsons A, Perino JR, McBennett K, Kutney K, Drumm ML, Pritts N, Griswold MA, Ma D, Dell KM, Flask CA, Chen Y (2021) Rapid b1-insensitive mr fingerprinting for quantitative kidney imaging. Radiology 300:380–387. https://doi.org/10.1148/RADIOL.2021202302

Article  PubMed  Google Scholar 

Ontaneda D, Gulani V, Deshmane A, Shah A, Guruprakash DK, Jiang Y, Ma D, Fisher E, Rudick RA, Raza P, Kilbane M, Cohen JA, Sakaie K, Lowe MJ, Griswold MA, Nakamura K, Magnetic resonance fingerprinting in multiple sclerosis, Multiple Scler Related Disord 79. https://doi.org/10.1016/j.msard.2023.105024

Jiang Y, Ma D, Keenan KE, Stupic KF, Gulani V, Griswold MA (2017) Repeatability of magnetic resonance fingerprinting t1 and t2 estimates assessed using the ismrm/nist mri system phantom. Magn Resonan Med 78:1452–1457. https://doi.org/10.1002/MRM.26509

Article  CAS  Google Scholar 

Dupuis A, Chen Y, Hansen M, Chow K, Sun JEP, Badve C, Ma D, Griswold MA, Boyacioglu R, Quantifying 3d mr fingerprinting (3d-mrf) reproducibility across subjects, sessions, and scanners automatically using mni atlases, Magn Reson Med https://doi.org/10.1002/mrm.29983

Keenan KE, Biller JR, Delfino JG, Boss MA, Does MD, Evelhoch JL, Griswold MA, Gunter JL, Hinks RS, Hoffman SW, Kim G, Lattanzi R, Li X, Marinelli L, Metzger GJ, Mukherjee P, Nordstrom RJ, Peskin AP, Perez E, Russek SE, Sahiner B, Serkova N, Shukla-Dave A, Steckner M, Stupic KF, Wilmes LJ, Wu HH, Zhang H, Jackson EF, Sullivan DC (2019) Recommendations towards standards for quantitative mri (qmri) and outstanding needs. J Magn Reson Imaging 49:e26–e39. https://doi.org/10.1002/jmri.26598

Article  PubMed  PubMed Central  Google Scholar 

Keenan KE, Gimbutas Z, Dienstfrey A, Stupic KF (2019) Assessing effects of scanner upgrades for clinical studies. J Magn Reson Imaging 50:1948–1954. https://doi.org/10.1002/jmri.26785

Article  PubMed  Google Scholar 

Karakuzu A, Biswas L, Cohen-Adad J, Stikov N (2022) Vendor-neutral sequences and fully transparent workflows improve inter-vendor reproducibility of quantitative mri. Magn Reson Med 88:1212–1228. https://doi.org/10.1002/MRM.29292

Article  PubMed  Google Scholar 

Dupuis A, Chen Y, Griswold MA, Boyacioglu R, Quantifying repeatability of a 3d-mrf protocol during scanner software upgrades. In: ISMRM Annual Meeting

Cashmore MT, McCann AJ, Wastling SJ, McGrath C, Thornton J, Hall MG (2021) Clinical quantitative mri and the need for metrology. Br J Radiol 94:20201215. https://doi.org/10.1259/BJR.20201215/FORMAT/EPUB

Article  PubMed  PubMed Central  Google Scholar 

Korte JC, Chin Z, Carr M, Holloway L, Franich R, Magnetic resonance biomarker assessment software (mr-bias): an automated open-source tool for the ismrm/nist system phantom. Phys Med Biol 68. https://doi.org/10.1088/1361-6560/acbcbb

Stupic KF, Ainslie M, Boss MA, Charles C, Dienstfrey AM, Evelhoch JL, Finn P, Gimbutas Z, Gunter JL, Hill DL, Jack CR, Jackson EF, Karaulanov T, Keenan KE, Liu G, Martin MN, Prasad PV, Rentz NS, Yuan C, Russek SE (2021) A standard system phantom for magnetic resonance imaging . https://doi.org/10.1002/mrm.28779

Keenan KE, Gimbutas Z, Dienstfrey A, Stupic KF, Boss MA, Russek SE, Chenevert TL, Prasad PV, Guo J, Reddick WE, Cecil KM, Shukla-Dave A, Nunez DA, Konar AS, Liu MZ, Jambawalikar SR, Schwartz LH, Zheng J, Hu P, Jackson EF, Multi-site, multi-platform comparison of mri t1 measurement using the system phantom. PLoS One 16. https://doi.org/10.1371/JOURNAL.PONE.0252966

Moreau D, Wiebels K, Boettiger C Containers for computational reproducibility. Nat Rev Methods Primers 3. https://doi.org/10.1038/s43586-023-00236-9

Huo Y, Blaber J, Damon SM, Boyd BD, Bao S, Parvathaneni P, Noguera CB, Chaganti S, Nath V, Greer JM, Lyu I, French WR, Newton AT, Rogers BP, Landman BA (2018) Towards portable large-scale image processing with high-performance computing. https://doi.org/10.1007/s10278-018-0080-0

Kim Y, Joshi AA, Choi S, Joshi SH, Bhushan C, Varadarajan D, Haldar JP, Leahy RM, Shattuck DW Brainsuite bids app: Containerized workflows for mri analysis, Preprint. bioRxiv https://doi.org/10.1101/2023.03.14.532686

Gedamu EL, Collins DL, Arnold DL (2008) Automated quality control of brain mr images. J Magn Reson Imaging 28:308–319. https://doi.org/10.1002/jmri.21434

Article  PubMed  Google Scholar 

Sun J, Barnes M, Dowling J, Menk F, Stanwell P, Greer PB (2015) An open source automatic quality assurance (osaqa) tool for the acr mri phantom. Australas Phys Eng Sci Med 38:39–46. https://doi.org/10.1007/s13246-014-0311-8

Article  PubMed  Google Scholar 

Yang K, Saab D (2020) An intelligent analysis framework for clinical-translational mri research

Chow K, Kellman P, XH Prototyping image reconstruction and analysis with fire. In: SCMR 24th annual scientific sessions

Dupuis A, Bolding R, Chen Y, Boyacioglu R, Griswold MA (2024) mrftools: a research framework for integrated design, simulation, acquisition, and reconstruction of magnetic resonance fingerprinting (mrf) . https://doi.org/10.5281/zenodo.10479682

Canny J (1986) A computational approach to edge detection

Hough PV (1959) Machine analysis of bubble chamber pictures. In: International Conference on high energy accelerators and instrumentation, CERN 1959:554–556

International Telecommunication Union, Bt.601: Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, International Telecommunication Union, accessed: Insert date here (n.d.)

Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Liu CY, Atkinson D, Kellman P, Kozerke S, Xue H, Campbell-Washburn AE, Sørensen TS, Hansen MS (2017) Ismrm raw data format: a proposed standard for mri raw datasets. Magn Reson Med 77:411–421. https://doi.org/10.1002/mrm.26089

Article  PubMed  Google Scholar 

Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

Article  Google Scholar 

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with numpy. Nature 585:357–362. https://doi.org/10.1038/s41586-020-2649-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupuis A, Boyacioglu R, Yong C, Griswold M (2024) Code for real-time automated quality control for magnetic resonance fingerprinting. https://doi.org/10.5281/zenodo.11115989

Dupuis A, Griswold M, Boyacioglu R, Keenan K (2024) Magnetic resonance fingerprinting DICOM validation datasets for real-time automated quality control for quantitative MRI. https://doi.org/10.5281/zenodo.11372539

留言 (0)

沒有登入
gif