Blending motor learning approaches for short-term adjustments to gait in people with Parkinson disease

Ashoori A, Eagleman DM, Jankovic J (2015) Effects of Auditory Rhythm and Music on Gait disturbances in Parkinson’s Disease. Front Neurol 6:234. https://doi.org/10.3389/fneur.2015.00234

Article  PubMed  PubMed Central  Google Scholar 

Azulay JP, Mesure S, Amblard B, Blin O, Sangla I, Pouget J (1999) Visual control of locomotion in Parkinson’s disease. Brain 122(Pt 1):111–120. https://doi.org/10.1093/brain/122.1.111

Article  PubMed  Google Scholar 

Bayle N, Patel AS, Crisan D et al (2016) Contribution of step length to increase walking and turning speed as a marker of Parkinson’s Disease Progression. PLoS ONE 11:e0152469. https://doi.org/10.1371/journal.pone.0152469

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beigi M, Wilkinson L, Gobet F, Parton A, Jahanshahi M (2016) Levodopa medication improves incidental sequence learning in Parkinson’s disease. Neuropsychologia 93:53–60. https://doi.org/10.1016/j.neuropsychologia.2016.09.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berard J, Fung J, Lamontagne A (2012) Impact of aging on visual reweighting during locomotion. Clin Neurophysiol 123:1422–1428. https://doi.org/10.1016/j.clinph.2011.11.081

Article  PubMed  Google Scholar 

Chawla G, Hoppe M, Browner N, Lewek MD (2020) Individuals With Parkinson’s Disease Retain Spatiotemporal Gait Control With Music and Metronome Cues. Motor Control 1–11. https://doi.org/10.1123/mc.2020-0038

Chen HY, Wing AM, Pratt D (2006) The synchronisation of lower limb responses with a variable metronome: the effect of biomechanical constraints on timing. Gait Posture 23:307–314. https://doi.org/10.1016/j.gaitpost.2005.04.001

Article  PubMed  Google Scholar 

Del Olmo MF, Cheeran B, Koch G, Rothwell JC (2007) Role of the cerebellum in externally paced rhythmic finger movements. J Neurophysiol 98:145–152. https://doi.org/10.1152/jn.01088.2006

Article  PubMed  Google Scholar 

Duppen CP, Wrona H, Dayan E, Lewek MD (2023) Evidence of Implicit and Explicit Motor Learning during Gait training with distorted rhythmic auditory cues. J Mot Behav 1–10. https://doi.org/10.1080/00222895.2023.2231874

Forner-Cordero A, Pinho JP, Umemura G, Lourenco JC, Mezencio B, Itiki C, Krebs HI (2019) Effects of supraspinal feedback on human gait: rhythmic auditory distortion. J Neuroeng Rehabil 16:159. https://doi.org/10.1186/s12984-019-0632-7

Article  PubMed  PubMed Central  Google Scholar 

French MA, Cohen ML, Pohlig RT, Reisman DS (2021) Fluid cognitive abilities are important for learning and Retention of a New, explicitly learned walking pattern in individuals after stroke. Neurorehabil Neural Repair 35:419–430. https://doi.org/10.1177/15459683211001025

Article  PubMed  PubMed Central  Google Scholar 

Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32:1791–1802. https://doi.org/10.1523/jneurosci.4107-11.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galna B, Lord S, Burn DJ, Rochester L (2015) Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov Disord 30:359–367. https://doi.org/10.1002/mds.26110

Article  CAS  PubMed  Google Scholar 

Gamble KR, Cummings TJ Jr., Lo SE, Ghosh PT, Howard JH Jr., Howard DV (2014) Implicit sequence learning in people with Parkinson’s disease. Front Hum Neurosci 8:563. https://doi.org/10.3389/fnhum.2014.00563

Article  PubMed  PubMed Central  Google Scholar 

Ghai S, Ghai I, Schmitz G, Effenberg AO (2018) Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci Rep 8:506. https://doi.org/10.1038/s41598-017-16232-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11:523–532. https://doi.org/10.1038/nrn2850

Article  CAS  PubMed  Google Scholar 

Hoppe M, Chawla G, Browner N, Lewek MD (2020) The effects of metronome frequency differentially affects gait on a treadmill and overground in people with Parkinson disease. Gait Posture 79:41–45. https://doi.org/10.1016/j.gaitpost.2020.04.003

Article  PubMed  Google Scholar 

Hsu JL, Fan YC, Huang YL, Wang J, Chen WH, Chiu HC, Bai CH (2015) Improved predictive ability of the Montreal Cognitive Assessment for diagnosing dementia in a community-based study. Alzheimers Res Ther 7:69. https://doi.org/10.1186/s13195-015-0156-8

Article  PubMed  PubMed Central  Google Scholar 

Jablonowski J, Taesler P, Fu Q, Rose M (2018) Implicit acoustic sequence learning recruits the hippocampus. PLoS ONE 13:e0209590. https://doi.org/10.1371/journal.pone.0209590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Judge JO, Davis RB 3rd, Ounpuu S (1996) Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol Biol Sci Med Sci 51:M303–312. https://doi.org/10.1093/gerona/51a.6.m303

Article  CAS  Google Scholar 

Kal E, Prosee R, Winters M, van der Kamp J (2018) Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS ONE 13:e0203591. https://doi.org/10.1371/journal.pone.0203591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SJ, Ogilvie M, Shimabukuro N, Stewart T, Shin JH (2015) Effects of Visual Feedback distortion on Gait Adaptation: comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning. IEEE Trans Biomed Eng 62:2244–2250. https://doi.org/10.1109/tbme.2015.2420851

Article  PubMed  Google Scholar 

King LA, Priest KC, Salarian A, Pierce D, Horak FB (2012) Comparing the Mini-BESTest with the Berg Balance Scale to Evaluate Balance disorders in Parkinson’s Disease. Parkinsons Dis 2012:375419. https://doi.org/10.1155/2012/375419

Article  PubMed  Google Scholar 

Lee YS, Vakoch DA (1996) Transfer and retention of implicit and explicit learning. Br J Psychol 87(Pt 4):637–651. https://doi.org/10.1111/j.2044-8295.1996.tb02613.x

Article  PubMed  Google Scholar 

Leow LA, Marinovic W, de Rugy A, Carroll TJ (2018) Task errors contribute to implicit aftereffects in sensorimotor adaptation. Eur J Neurosci 48:3397–3409. https://doi.org/10.1111/ejn.14213

Article  PubMed  Google Scholar 

Long AW, Roemmich RT, Bastian AJ (2016) Blocking trial-by-trial error correction does not interfere with motor learning in human walking. J Neurophysiol 115:2341–2348. https://doi.org/10.1152/jn.00941.2015

Article  PubMed  PubMed Central  Google Scholar 

Mak MK (2013) Reduced step length, not step length variability is central to gait hypokinesia in people with Parkinson’s disease. Clin Neurol Neurosurg 115:587–590. https://doi.org/10.1016/j.clineuro.2012.07.014

Article  PubMed  Google Scholar 

Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645. https://doi.org/10.1523/jneurosci.5317-05.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris ME, Iansek R, Matyas TA, Summers JJ (1994) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117 (Pt 51169–1181. https://doi.org/10.1093/brain/117.5.1169

Nemeth D, Janacsek K, Kiraly K et al (2013) Probabilistic sequence learning in mild cognitive impairment. Front Hum Neurosci 7:318. https://doi.org/10.3389/fnhum.2013.00318

Article  PubMed  PubMed Central  Google Scholar 

Nieuwboer A, Kwakkel G, Rochester L et al (2007) Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry 78:134–140. https://doi.org/10.1136/jnnp.200X.097923

Article  CAS 

留言 (0)

沒有登入
gif