Abd Elwakil MM, Khalil IA, Elewa YHA, Kusumoto K, Sato Y, Shobaki N, Kon Y, Harashima H (2019) Lung-endothelium-targeted nanoparticles based on a pH-sensitive lipid and the GALA peptide enable robust gene silencing and the regression of metastatic lung cancer. 29:1807677. https://doi.org/10.1002/adfm.201807677
Abrigo NA, Dods KK, Makovsky CA, Lohan S, Mitra K, Newcomb KM, Le A, Hartman MCT (2023) Development of a cyclic, cell penetrating peptide compatible with in vitro selection strategies. ACS Chem Biol 18:746–755. https://doi.org/10.1021/acschembio.2c00680
Article CAS PubMed PubMed Central Google Scholar
Ahlschwede KM, Curran GL, Rosenberg JT, Grant SC, Sarkar G, Jenkins RB, Ramakrishnan S, Poduslo JF, Kandimalla KK (2019) Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer’s disease brain. Nanomed Feb 16:258–266. https://doi.org/10.1016/j.nano.2018.09.010
Arif M, Ahmad S, Ali F, Fang G, Li M, Yu DJ (2020) TargetCPP: accurate prediction of cell-penetrating peptides from optimized multi-scale features using gradient boost decision tree. J Comput Aided Mol Des 34:841–856. https://doi.org/10.1007/s10822-020-00307-z
Article CAS PubMed Google Scholar
Arif M, Kabir M, Ahmed S, Khan A, Ge F, Khelifi A, Yu DJ (2022) DeepCPPred: a deep learning framework for the discrimination of cell-penetrating peptides and their uptake efficiencies. IEEE/ACM Trans Comput Biol Bioinform 19:2749–2759. https://doi.org/10.1109/TCBB.2021.3102133
Bates E, Bode C, Costa M, Gibson CM, Granger C, Green C, Grimes K, Harrington R, Huber K, Kleiman N, Mochly-Rosen D, Roe M, Sadowski Z, Solomon S, Widimsky P (2008) Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 117(7):886–896. https://doi.org/10.1161/CIRCULATIONAHA.107.759167
Belnoue ED, Berardino-Besson W, Gaertner H, Carboni S, Dunand-Sauthier I, Cerini F, Suso-Inderberg EM, Wälchli S, König S, Salazar AM, Hartley O, Dietrich PY, Walker PR, Derouazi M (2016) Enhancing antitumor immune responses by optimized combinations of cell-penetrating peptide-based vaccines and adjuvants. Mol Ther 24:1675–1685. https://doi.org/10.1038/mt.2016.134
Article CAS PubMed PubMed Central Google Scholar
Ben Djemaa S, David S, Hervé-Aubert K, Falanga A, Galdiero S, Allard-Vannier E, Chourpa I, Munnier E (2018) Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharmaceutics: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e V 131:99–108. https://doi.org/10.1016/j.ejpb.2018.07.024
Bersani M, Rizzuti M, Pagliari E, Garbellini M, Saccomanno D, Moulton HM, Bresolin N, Comi GP, Corti S, Nizzardo M (2022) Cell-penetrating peptide-conjugated morpholino rescues SMA in a symptomatic preclinical model. Mol Ther 30:1288–1299. https://doi.org/10.1016/j.ymthe.2021.11.012
Article CAS PubMed Google Scholar
Bhattacharya M, Sadeghi A, Sarkhel S, Hagström M, Bahrpeyma S, Toropainen E, Auriola S, Urtti A (2020) Release of functional dexamethasone by intracellular enzymes: a modular peptide-based strategy for ocular drug delivery. J Controlled Release: Official J Controlled Release Soc 327:584–594. https://doi.org/10.1016/j.jconrel.2020.09.005
Bocsik A, Grof I, Kiss L, Otvos F, Zsiros O, Daruka L, Fulop L, Vastag M, Kittel A, Imre N, Martinek TA, Pal C, Szabo-Revesz P, Deli MA (2019) Dual action of the PN159/KLAL/MAP peptide: increase of drug penetration across Caco-2 intestinal barrier model by modulation of tight junctions and plasma membrane permeability. Pharmaceutics 11 https://doi.org/10.3390/pharmaceutics11020073
Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM (2018) Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules. https://doi.org/10.3390/molecules23020295
Article PubMed PubMed Central Google Scholar
Brandt F, O’Connell C, Cazzaniga A, Waugh JM (2010) Efficacy and safety evaluation of a novel botulinum toxin topical gel for the treatment of moderate to severe lateral canthal lines. Dermatologic surgery: official publication for American Society for Dermatologic Surgery [et al.], 36 suppl:42111–2118. https://doi.org/10.1111/j.1524-4725.2010.01711.x
Capron M, Béghin L, Leclercq C, Labreuche J, Dendooven A, Standaert A, Delbeke M, Porcherie A, Nachury M, Boruchowicz A, Dupas JL, Fumery M, Paupard T, Catteau S, Deplanque D, Colombel JF, Desreumaux P (2019) Safety of P28GST, a protein derived from a schistosome helminth parasite, in patients with Crohn’s disease: a pilot study (ACROHNEM). J Clin Med 9(1):41. https://doi.org/10.3390/jcm9010041
Article CAS PubMed PubMed Central Google Scholar
Chen YJ, Liu BR, Dai YH, Lee CY, Chan MH, Chen HH, Chiang HJ, Lee HJ (2012) A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides. Gene 493:201–210. https://doi.org/10.1016/j.gene.2011.11.060
Article CAS PubMed Google Scholar
Chen L, Chu C, Huang T, Kong X, Cai YD (2015) Prediction and analysis of cell-penetrating peptides using pseudo-amino acid composition and random forest models. Amino Acids 47:1485–1493. https://doi.org/10.1007/s00726-015-1974-5
Article CAS PubMed Google Scholar
Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13:868–874. https://doi.org/10.1038/nmeth.3993
Article CAS PubMed PubMed Central Google Scholar
Cho DH, Hwang YJ, Park JH, Lee JY, Park JH, Jo I (2023) Nucleus-targeted delivery of nitric oxide in human mesenchymal stem cells enhances osteogenic differentiation. Bioorg Chem 135:106483. https://doi.org/10.1016/j.bioorg.2023.106483
Article CAS PubMed Google Scholar
Choi DH, Lee D, Jo BS, Park KS, Lee KE, Choi JK, Park YJ, Lee JY, Park YS (2020) A synthetic cell-penetrating heparin-binding peptide derived from BMP4 with anti-inflammatory and chondrogenic functions for the treatment of arthritis. Int J Mol Sci 21. https://doi.org/10.3390/ijms21124251
Chu Y, Chen N, Yu H, Mu H, He B, Hua H, Wang A, Sun K (2017) Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. Int J Nanomed 12:1353–1368. https://doi.org/10.2147/IJN.S126865
Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, Dickson G, Wood MJ, Wilton SD, Straub V, Kole R, Shrewsbury SB, Sewry C, Morgan JE, Bushby K, Muntoni F (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605. https://doi.org/10.1016/S0140-6736(11)60756-3
Article CAS PubMed PubMed Central Google Scholar
Copolovici D, Langel K, Eriste E, Ü L (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994. https://doi.org/10.1021/nn4057269
Article CAS PubMed Google Scholar
Cousins MJ, Pickthorn K, Huang S, Critchley L, Bell G (2013) The safety and efficacy of KAI-1678- an inhibitor of epsilon protein kinase C (εPKC)-versus lidocaine and placebo for the treatment of postherpetic neuralgia: a crossover study design. Pain Med Apr 14(4):533–540. https://doi.org/10.1111/pme.12058
Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y, De Spiegeleer B, Xia J (2021) BBPpred: sequence-based prediction of blood-brain barrier peptides with feature representation learning and logistic regression. J Chem Inf Model 61:525–534. https://doi.org/10.1021/acs.jcim.0c01115
Article CAS PubMed Google Scholar
Darif N, Vogelsang K, Vorgia E, Schneider D, Deligianni E, Geibel S, Vontas J, Denecke S (2023) Cell penetrating peptides are versatile tools for enhancing multimodal uptake into cells from pest insects. Pestic Biochem Physiol 190:105317. https://doi.org/10.1016/j.pestbp.2022.105317
Article CAS PubMed Google Scholar
de Mello LR, Porosk L, Lourenco TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel U, da Silva ER (2021) Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and its use as a carrier for nucleic acids. ACS Appl Bio Mater 4:6404–6416. https://doi.org/10.1021/acsabm.1c00601
Article CAS PubMed Google Scholar
de Oliveira ECL, Santana K, Josino L, Lima ELAH, de Souza de Sales Junior C (2021) Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space. Sci Rep 11:7628. https://doi.org/10.1038/s41598-021-87134-w
Article CAS PubMed PubMed Central Google Scholar
Dimitri GM, Lió P (2017) DrugClust: a machine learning approach for drugs side effects prediction. Comput Biol Chem 68:204–210. https://doi.org/10.1016/j.compbiolchem.2017.03.008
Article CAS PubMed Google Scholar
Dobchev DA, Mager I, Tulp I, Karelson G, Tamm T, Tamm K, Janes J, Langel U, Karelson M (2010) Prediction of cell-penetrating peptides using artificial neural networks. Curr Comput Aided Drug Des 6:79–89. https://doi.org/10.2174/157340910791202478
留言 (0)