A genome-wide association study reveals molecular mechanism underlying powdery mildew resistance in cucumber

Block C, Reitsma K. Powdery mildew resistance in the U.S. national plant germplasm system cucumber collection. Hortscience. 2005;40:414–20.

Article  Google Scholar 

Lebeda A, Mieslerová B. Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathol. 2011;60(3):400–15.

Article  Google Scholar 

Keinath AP, Dubose VB. Controlling powdery mildew on cucurbit rootstock seedlings in the greenhouse with fungicides and biofungicides. Crop Prot. 2012;42:338–44.

Article  CAS  Google Scholar 

Hafez YM, Attia KA, Kamel S, Alamery SF, Abdelaal K. Bacillus subtilis as a bio-agent combined with nano molecules can control powdery mildew disease through histochemical and physiobiochemical changes in cucumber plants. Physiol Mol Plant Pathol. 2020;11:101489.

Article  Google Scholar 

Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic Res. 2020;7:3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.

Article  CAS  Google Scholar 

He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.

Article  CAS  PubMed  Google Scholar 

Zhang K, Wang X, Zhu W, Qin X, Xu J, Cheng C, Lou Q, Li J, Chen J. Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor Appl Genet. 2018;131:2229–43.

Article  CAS  PubMed  Google Scholar 

Berg JA, Appiano M, Santillán Martínez M, Hermans FW, Vriezen WH, Visser RG, Bai Y, Schouten HJ. A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol. 2015;15:243.

Article  PubMed  PubMed Central  Google Scholar 

Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R. Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci. 2015;6:1155.

Article  PubMed  PubMed Central  Google Scholar 

Badri Anarjan M, Bae I, Lee S. Marker-assisted evaluation of two powdery mildew resistance candidate genes in Korean cucumber inbred lines. Agronomy. 2021;11:2191.

Article  CAS  Google Scholar 

Lu H, Wang F, Wang Y, Lin R, Wang Z, Mao C. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ. 2023;46(4):1104–19.

Article  CAS  PubMed  Google Scholar 

Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol. 2018;74:114–22.

Article  CAS  PubMed  Google Scholar 

Dong Z, Li W, Liu J, Li L, Pan S, Liu S, Gao J, Liu L, Liu X, Wang GL, Dai L. The rice phosphate transporter protein OsPT8 regulates disease resistance and plant growth. Sci Rep. 2019;9:2–11.

Google Scholar 

Poirier Y, Thoma S, Somerville C, Schiefelbein J. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991;97:1087–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arruda MP, Brown P, Brown-Guedira G, Krill AM, Thurber C, Merrill KR, Foresman BJ, Kolb FL. Genome-wide association mapping of fusarium head blight resistance in wheat using genotyping-by-sequencing. Plant Genome. 2016;9:1–14.

Article  CAS  Google Scholar 

Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 2017;170:114–126.e15.

Article  CAS  PubMed  Google Scholar 

Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genet. 2019;51:1540–8.

Article  CAS  PubMed  Google Scholar 

Chen B, Zhang Y, Sun Z, Liu Z, Zhang D, Yang J, Wang G, Wu J, Ke H, Meng C, Wu L, Yan Y, Cui Y, Li Z, Wu L, Zhang G, Wang X, Ma Z. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. Plant J. 2021;107:831–46.

Article  CAS  PubMed  Google Scholar 

Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S. Genomic analyses provide insights into the history of tomato breeding. Nature Genet. 2014;46:1220–6.

Article  CAS  PubMed  Google Scholar 

Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC. QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J. 2018;16:1546–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F. Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J. 2020;18:2545–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genet. 2013;45:1510–5.

Article  CAS  PubMed  Google Scholar 

Wang X, Bao K, Reddy UK, Bai Y, Hammar SA, Jiao C, Wehner TC, Ramírez-Madera AO, Weng Y, Grumet R, Fei Z. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horti Res. 2018;5:64.

Article  Google Scholar 

Lee HY, Kim JG, Kang BC. Assessment of the genetic diversity of the breeding lines and a genome wide association study of three horticultural traits using worldwide cucumber (Cucumis spp.) germplasm collection. Agronomy. 2020;10:1736.

Article  CAS  Google Scholar 

Liu M, Liang Z, Aranda MA, Hong N, Liu L, Kang B, Gu Q. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods. 2020;16:9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Liu M, Hu Q, Yan W, Pan J, Yan Y, Chen X. A CsEIL3-CsARN6.1 module promotes waterlogging-triggered adventitious root formation in cucumber by activating the expression of CsPrx5. Plant J. 2023;114(4):824–35.

Article  CAS  PubMed  Google Scholar 

Liu S, Huang H, Yi X, Zhang Y, Yang Q, Zhang C, Fan C, Zhou Y. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study. Plant Biotechnol J. 2020;18:1472–84.

Article  CAS  PubMed  Google Scholar 

Innark P, Khanobdee C, Samipak S, Jantasuriyarat C. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Sci Hortic. 2013;162:278–84.

Article  CAS  Google Scholar 

Mohler V, Stadlmeier M. Dynamic qtl for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet. 2019;60:291–300.

Article  CAS  PubMed  Google Scholar 

Castro AJ, Chen X, Hayes PM, Knapp SJ, Vivar H. Coincident QTL which determine seedling and adult plant resistance to stripe rust in barley. Crop Sci. 2002;42:1701–8.

Article 

留言 (0)

沒有登入
gif