Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation

Condic, M. L. Totipotency: what it is and what it is not. Stem Cell Dev. 23, 796–812 (2014).

Article  Google Scholar 

Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

Article  CAS  PubMed  Google Scholar 

Gurdon, J. B. & Uehlinger, V. Fertile’ intestine nuclei. Nature 210, 1240–1241 (1966).

Article  CAS  PubMed  Google Scholar 

Nakao, S. et al. Synchronization of the ovulation and copulation timings increased the number of in vivo fertilized oocytes in superovulated female mice. PLoS ONE 18, e0281330 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, J. & Thomson, J. A. in Principles of Tissue Engineering (eds Lanza, R. et al.) 581–594 (Elsevier, 2014).

Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

Article  CAS  PubMed  Google Scholar 

Sha, Q.-Q. et al. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun. 11, 4917 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

Article  CAS  PubMed  Google Scholar 

Ladstätter, S. & Tachibana, K. Genomic insights into chromatin reprogramming to totipotency in embryos. J. Cell Biol. 218, 70–82 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

Article  CAS  PubMed  Google Scholar 

Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

Article  CAS  PubMed  Google Scholar 

Rowe, H. M. & Trono, D. Dynamic control of endogenous retroviruses during development. Virology 411, 273–287 (2011).

Article  CAS  PubMed  Google Scholar 

Chernyavskaya, Y. et al. Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 144, 2925–2939 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gkountela, S. et al. DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

Article  CAS  PubMed  Google Scholar 

Percharde, M. et al. A LINE1–nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakashita, A. et al. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat. Genet. 55, 484–495 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. 47, 8485–8501 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J., Cook, L. & Chen, Z. Systematic evaluation of retroviral LTRs as cis-regulatory elements in mouse embryos. Cell Rep. 43, 113775 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

Article  Google Scholar 

Ge, S. X. Exploratory bioinformatics investigation reveals importance of ‘junk’ DNA in early embryo development. BMC Genomics 18, 200 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Modzelewski, A. J. et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell 184, 5541–5558.e22 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221–234 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, P. J., Wu, S. F., James, C. R., Wike, C. L. & Cairns, B. R. Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming. Cell 172, 993–1006.e13 (2018).

Article  CAS  PubMed  Google Scholar 

Gassler, J. et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 378, 1305–1315 (2022).

Article  CAS  PubMed  Google Scholar 

Kobayashi, W. et al. Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition. Nat. Struct. Mol. Biol. 31, 757–766 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zou, Z. et al. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science 378, eabo7923 (2022).

Article  CAS  Google Scholar 

Ji, S. et al. OBOX regulates mouse zygotic genome activation and early development. Nature 620, 1047–1053 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, E. & Vastenhouw, N. L. From mother to embryo: a molecular perspective on zygotic genome activation. Curr. Top. Dev. Biol. 140, 209–254 (2020).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif