Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation

Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M (2018) Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 58:579–589

Article  CAS  PubMed  Google Scholar 

Abedi Sarvestani R, Aghasi M (2019) Health risk assessment of heavy metals exposure (lead, cadmium, and copper) through drinking water consumption in Kerman city, Iran. Environ Earth Sci 78:1–11

Article  Google Scholar 

Afzal MR, Naz M, Wan J, Dai Z, Ullah R, Rehman SU, Du D (2023) Insights into the mechanisms involved in lead (Pb) tolerance in invasive plants-the current status of understanding. Plants 12:2084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali MS, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 17:621

Article  Google Scholar 

Ali Q, Ayaz M, Yu C, Wang Y, Gu Q, Wu H, Gao X (2022) Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Chemosphere 303:135206

Article  CAS  PubMed  Google Scholar 

Alsubih M, El Morabet R, Khan RA, Khan NA, Ahmed S, Qadir A, Changani F (2021) Occurrence and health risk assessment of arsenic and heavy metals in groundwater of three industrial areas in Delhi, India. Environ Sci Pollu Res 28:63017–63031

Article  CAS  Google Scholar 

Amin H, Arain BA, Jahangir TM, Abbasi MS, Amin FJG (2018) Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geol Ecol Landsc 2:51–60

Google Scholar 

Aziz KHH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO (2023) Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 13:7595–17610

Google Scholar 

Bello AO, Tawabini BS, Khalil AB, Boland CR, Saleh TAJE (2018) Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng 120:126–133

Article  Google Scholar 

Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of benzo [a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. Biotech 4:205–211

Google Scholar 

Bhavya G, Hiremath KY, Jogaiah S, Geetha N (2022) Heavy metal-induced oxidative stress and alteration in secretory proteins in yeast isolates. Arch Microbiol 204:72

Article  Google Scholar 

Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67

Article  CAS  Google Scholar 

Çelik S, Akar ST, Şölener M, Akar T (2017) Anionically reinforced hydrogel network entrapped fungal cells for retention of cadmium in the contaminated aquatic media. J Environ Manag 204:583–593

Article  Google Scholar 

Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Kumar V (2023) Heavy metal tolerance in microalgae: detoxification mechanisms and applications. Aquat Toxicol 260:106555

Article  CAS  PubMed  Google Scholar 

Chatterjee S, Das S (2023) Whole-genome sequencing of biofilm-forming and chromium-resistant mangrove fungus Aspergillus niger BSC-1. World J Microbiol Biotechnol 39:55

Article  CAS  Google Scholar 

Chauhan M, Solanki M, Nehra KJ (2017) Putative mechanism of cadmium bioremediation employed by resistant bacteria. Jordan J Biol Sci 10:121

Google Scholar 

Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl Water Sci 8:1–10

Article  CAS  Google Scholar 

Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Rao CJA (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

Article  Google Scholar 

Chia JC (2021) Phytochelatin synthase in heavy metal detoxification and xenobiotic metabolism. Biodegradation technology of organic and inorganic pollutants. IntechOpen, pp 1410. https://doi.org/10.5772/intechopen.94650

Dagher DJ, Pitre FE, Hijri MJ (2020) Ectomycorrhizal fungal inoculation of Sphaerosporella brunnea significantly increased stem biomass of Salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J Fungi 6:87

Article  CAS  Google Scholar 

Danouche M, El Ghachtouli N, El Arroussi H (2021) Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 7:07609

Article  Google Scholar 

Deng J, Guo P, Zhang X, Su H, Zhang Y, Wu Y, Li Y (2020) Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Mar Pollut Bull 159:111482

Article  CAS  PubMed  Google Scholar 

Duan C, Fang L, Yang C, Chen W, Cui Y, Li S (2018) Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol Environ Saf 156:106–115

Article  CAS  PubMed  Google Scholar 

Ebrahimi M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei NJJ (2020) Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci 18:335–343

CAS  Google Scholar 

Edo GI, Samuel PO, Oloni GO, Ezekiel GO, Ikpekoro VO, Obasohan P (2024) Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem Ecol 40:322–349

Article  CAS  Google Scholar 

Emparan Q, Harun R, Danquah M (2019) Role of phycoremediation for nutrient removal from wastewaters: a review. Appl Ecol Environ Res 17:889–915

Article  Google Scholar 

Fomina M, Bowen AD, Charnock JM, Podgorsky VS, Gadd GM (2017) Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources. Environ Microbiol 19:1310–1321

Article  CAS  PubMed  Google Scholar 

Fulke AB, Ratanpal S, Sonker S (2024) Understanding heavy metal toxicity: implications on human health, marine ecosystems and bioremediation strategies. Mar Pollut Bull 206:116707

Article  CAS  PubMed  Google Scholar 

Gaggero E, Malandrino M, Fabbri D, Bordiglia G, Fusconi A, Mucciarelli M, Inaudi P, Calza P (2020) Uptake of potentially toxic elements by four plant species suitable for phytoremediation of Turin urban soils. Appl Sci 10(11):3948

Article  CAS  Google Scholar 

Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

Article  CAS  PubMed  Google Scholar 

González-González RB, Morales-Murillo MB, Martínez-Prado MA, Melchor-Martínez EM, Ahmed I, Bilal M, Parra-Saldívar R, Iqbal HM (2022) Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. Chemosphere 1

Article  Google Scholar 

Gomes BF, de Araújo CM, do Nascimento BF, Freire EM, Da Mottasobrinho MA, Carvalho MN (2022) Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. Environ Sci Poll Res 15:1–5

Google Scholar 

Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim HJE (2018) Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. Ecotoxicol Environ Saf 151:279–284

Article  CAS  PubMed  Google Scholar 

Gul I, Manzoor M, Kallerhoff J, Arshad MJC (2020) Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 258:127405

Article  CAS  PubMed  Google Scholar 

Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

Article  CAS  Google Scholar 

Guzmán-Moreno J, García-Ortega LF, Torres-Saucedo L, Rivas-Noriega P, Ramírez-Santoyo RM, Sánchez-Calderón L, Vidales-Rodríguez LE (2022) Bacillus megaterium HgT21: a promising metal multiresistant plant growth-promoting bacteria for soil biorestoration. Microbiol Spectr 10:656–722

Article  Google Scholar 

Hassan ZU, Ali S, Rizwan M, Ibrahim M, Nafees M, Waseem M (2017) Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. Probiotics in agroecosystem. Springer, pp 51737. https://doi.org/10.1007/978-981-10-4059-7_27

Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 120:358–369

Article  PubMed  Google Scholar 

Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijun A, Guangyu S (2020) Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol Environ Saf 195:110469

留言 (0)

沒有登入
gif