Augmented Reality Visualization of 3D Rotational Angiography in Congenital Heart Disease: A Comparative Study to Standard Computer Visualization

Berman DP, Khan DM, Gutierrez Y, Zahn EM (2012) The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv 80:922–930. https://doi.org/10.1002/ccd.23461

Article  PubMed  Google Scholar 

Stenger A, Dittrich S, Glockler M (2016) Three-dimensional rotational angiography in the pediatric cath lab: optimizing aortic interventions. Pediatr Cardiol 37:528–536. https://doi.org/10.1007/s00246-015-1310-6

Article  PubMed  Google Scholar 

Glocklet M, Halbfab J, Koch A, Achenbach S, Dittrich S (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82:436–442. https://doi.org/10.1002/ccd.24646

Article  Google Scholar 

Fagan TE, Truong ET, Jone PN, Bracken J, Quaife R, Abu Hazeem AA, Salcedo EE, Fonseca BM (2014) Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist Debakey Cardiovasc J 10(2):68–76. https://doi.org/10.14797/mdcj-10-2-68

Article  PubMed  PubMed Central  Google Scholar 

Aldoss O, Fonseca BM, Truong UT, Bracken J, Darst JR, Guo R, Jones TL, Fagan TE (2016) Diagnostic utility of three-dimensional rotational angiography in congenital cardiac catheterization. Pediatr Cardiol 37:1211–1221. https://doi.org/10.1007/s00246-016-1418-3

Article  PubMed  Google Scholar 

Glatz AC, Zhu X, Gillespie MJ, Hanna BD, Rome JJ (2010) Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging 3(11):1148–1157. https://doi.org/10.1016/j.jcmg.2010.09.011

Article  Google Scholar 

Poterucha JT, Foley TA, Taggart NW (2014) Percutaneous pulmonary valve implantation in a native outflow tract - 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc Interv 7(10):e151–e152. https://doi.org/10.1016/j.jcin.2014.03.015

Article  PubMed  Google Scholar 

Parimi M, Buelter J, Thanugundla V et al (2018) Feasibility and validity of printing 3D heart models from rotational angiography. Pediatr Cardiol 39:653–658. https://doi.org/10.1007/s00246-017-1799-y

Article  PubMed  Google Scholar 

Seckeler MD, Boe BA, Barber BJ, Berman DP, Armstrong AK (2021) Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models. Cardiol Young 31(9):1407–1411. https://doi.org/10.1017/S1047951121000275

Article  PubMed  Google Scholar 

Zablah JE, Rodriguez SA, Jacobson N, Morgan GJ (2021) Rapid prototyping airway and vascular models from 3D rotational angiography: Beans to cup 3D printing. Prog Pediatr Cardiol 63:101350. https://doi.org/10.1016/j.ppedcard.2021.101350

Article  Google Scholar 

Salavitabar A, Whiteside W, Zampi JD (2022) Feasibility of intraprocedural augmented reality visualization of 3D rotational angiography in congenital cardiac catheterization. Cardiol Young 3:1–3. https://doi.org/10.1017/S1047951122002153

Article  Google Scholar 

Gwet KL (2008) Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 61:29–48. https://doi.org/10.1348/000711006X126600

Article  PubMed  Google Scholar 

Schmauss D, Haeberle S, Hagl C, Sodian R (2014) Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardio-Thorac Surg 47(6):1044–1052. https://doi.org/10.1093/ejcts/ezu310

Article  Google Scholar 

Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B et al (2008) Physical models aiding in complex congenital heart surgery. Ann Thorac Surg 86:273–277

Article  PubMed  Google Scholar 

Biglino G, Capelli C, Leaver LK, Schievano S, Taylor AM, Wray J (2015) Involving patients, families and medical staff in the evaluation of 3D printing models of congenital heart disease. Commun Med 12(2–3):157–169. https://doi.org/10.1558/cam.28455

Article  PubMed  Google Scholar 

Biglino G, Koniordou D, Gasparini M, Capelli C, Leaver LK, Khambadkone SS, Taylor AM, Wray J (2017) Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr Cardiol 38:813–818. https://doi.org/10.1007/s00246-017-1586-9

Article  PubMed  PubMed Central  Google Scholar 

Haddad L, Waller BR, Johnson J, Choudhri A, McGhee V, Zurakowski D, Kuhls-Gilcrist A, Sathanandam S (2016) Radiation protocol for three-dimensional rotational angiography to limit procedural radiation exposure in the pediatric cardiac catheterization lab. Congenit Heart Dis 11(6):637–646. https://doi.org/10.1111/chd.12356

Article  PubMed  Google Scholar 

Yoo SJ, Spray T, Austin EH, Yun TJ, van Arsdell GS (2017) Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153(6):1530–1540. https://doi.org/10.1016/j.jtcvs.2016.12.054

Article  PubMed  Google Scholar 

Valverde I, Gomez G, Coserria JF et al (2015) 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 85(6):1006–1012. https://doi.org/10.1002/ccd.25810

Article  PubMed  Google Scholar 

Sodian R, Schmauss D, Schmitz C et al (2009) 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 88(3):974–978. https://doi.org/10.1016/j.athoracsur.2009.03.014

Article  PubMed  Google Scholar 

Salavitabar A, Chelliah A, Kalfa D, Crystal MA (2018) When a coronary artery fistula is not simply a fistula: using multimodality imaging to demonstrate an unusual embryologic remnant. J Thorac Cardiovasc Surg 156(1):358–362. https://doi.org/10.1016/j.jtcvs.2018.02.032

Article  PubMed  Google Scholar 

Lee C, Lee JY (2020) Utility of three-dimensional printed heart models for education on complex congenital heart diseases. Cardiol Young 30:1637–1642. https://doi.org/10.1017/S1047951120003753

Article  PubMed  Google Scholar 

Jones DB, Sung R, Weinberg C, Korelitz T, Andrews R (2016) Three-dimensional modeling may improve surgical education and clinical practice. Surg Innov 23(2):189–195. https://doi.org/10.1177/1553350615607641

Article  PubMed  Google Scholar 

Costello JP, Olivieri LJ, Su L, Kriger A, Alfares F, Thabit O, Marshall B, Yoo SJ, Kim PC, Jonas RA, Nath DS (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10:185–190. https://doi.org/10.1111/chd.12238

Article  PubMed  Google Scholar 

Biglino G, Capelli C, Wray J et al (2015) 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5:e007165. https://doi.org/10.1136/bmjopen-2014-007165

Article  PubMed  PubMed Central  Google Scholar 

Glöckler M, Halbfaß J, Koch A, Achenbach S, Dittrich S (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82(3):436–442. https://doi.org/10.1002/ccd.24646

Article  PubMed  Google Scholar 

Fagan T, Kay J, Carroll J, Neubauer A (2012) 3-D guidance of complex pulmonary artery stent placement using reconstructed rotational angiography with live overlay. Catheter Cardiovasc Interv 79(3):414–421. https://doi.org/10.1002/ccd.23229

Article  PubMed  Google Scholar 

Goreczny S, Morgan GJ, Dryzek P (2016) Live 3D image overlay for arterial duct closure with Amplatzer Duct Occluder II additional size. Cardiol Young 26(3):605–608. https://doi.org/10.1017/S1047951115001638

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif